
Simulating Realistic Water in Low Performance Game Engine
Environments [including Shockwave 3D]

Andrew M Phelps

Information Technology Dept.
Rochester Institute of Technology

Rochester, NY, 14623
http://andysgi.rit.edu/

Abstract

This article outlines the process of creating a
water simulation with semi-realistic properties
for use in a typical game engine or other real-
time 3D environment. Water simulation is
broken down into three major areas: wave
propagation, refraction, and reflection. Also
discussed are additional solutions for multi-
texturing and tiling of the textures needed to
produce the simulation, as well as discussion of a
technique to incorporate a projection into texture
space to simulate a cubic container such as a
pool or trough without the underlying geometry.
An example of the simulation is provided using a
Shockwave3D implementation. This file is
written in the Lingo language for backwards
compatibility only: it is wholly capable of being
ported to the Javascript like syntax in DMX
2004. A screenshot of the running simulation is
provided in Figure 1:

Figure 1: Water simulation with projective texturing, refraction,
reflection, and secondary texture blending - #OpenGL renderer.

1 WAVE GENERATION &
PROPOGATION

There are several available methodologies to approximate
wave propogation across a surface. There appear to be,
upon brief literature review, three major approaches to
wave propogation, each of which is suitable and
believable in certain contexts. These are sinusoidal
manipulation of a heightfield, manipulation of a
hieghtfield based on recursive noise funtions (Perlin
noise and/or some other suitable variation), and direct
copy of values in a two-dimentional array based on height
values in the previous frame.

1.1 SINUSOIDAL MANIPULATION
The first of these techniques, sinusoidal manipulation, is
fairly straightforward. Time (t) is calculated per-frame,
and a height value is constructed for each vertex of a
height field based on (t) length along a plot of the sine
function. Thus for each value (t) a height value is plotted
long the x- and y-axis. If the viewer is of sufficient
distance from the water, this undulating pattern can be
portrayed simply by an animated bump-map on the
surface [1].
Some other variations on this methodology call for
varying offsets in sin() along the y-axis relative to x, or
for modulation of several sine waves together at differing
intervals [2][3]. Still others call for random variations in
(t) to produce irregular ripple effects. The weakness of
this effect (when unmodified) is relatively apparent: the
water feels too regular, and the waves do not interact with
the environment [4]. Nonetheless, with careful
manipulation and mapping implementations, this
technique can look very convincing. It is also possible to
add specific water droplets or waves using sprite-overlay
techniques, instead of simulating them all in the base
surface itself [5]. An advanced implementation of
sinusoidal water animation is provided by Snook [6], and
several other sources.

1.2 NOISE BASED WAVES
The second technique involves layers of noise over
several generations. Patterns of ripples and waves can be
created by summing up band-limited noise to make
texture maps or height-field data representative of
waveforms [7][8]. These layers are then animated to
produce ripple effects based on a time-based strategy very
similar to that used when dealing with sinusoidal
animation.
An advantage of both this and the previous technique that
is worth noting is that they both, unlike the following
technique, can be made seamlessly tileable with very little
effort. Any square patch of water can be placed
seamlessly next to another, and waves will appear to
propogate across the two of them, provided that their
usage of either sin() or the noise() functions are in synch.
The disadvantage of this approach is that it is very difficul
to animate water emanating from a particular point on the
surface, such as would occur from a splash or droplet.

1.3 ARRAY BASED WAVES

1.3.1 Array Construction
The final seemingly major methodology for wave
generation and propogation is the so-called "array-based“
approach. This method creates two 2-dimensional arrays
in which to store height values for the water field (as a
point of optimization, it is often better to create one-
dimensional arrays and simulate 2D by using x and y
offsets into the index lookup). The sample file here uses
the algorithm presented by Mason McCusky in his test on
special effects [9], although several implementations of
this approach are similar.
The two arrays, which can be thought of as oldWater and
newWater, are populated with an initial height value. For
simplicity, the demo program uses zero as the initial
value, although it is very feasible to 'pre-seed’ the waave
field by providing initial values.
Every frame, the a copy of the oldWater array is stored,
the newWater array is dumped into the old, and the
newWater array is replaced with a copy of the oldWater
array, as shown in figure 2. This will have direct
ramification once one of the values is non-zero inside the
array, and once the arrays are 'processed’ before being
copied.

--cycle the arrays

aTemp = D3D_WORLD[#g_aOldwater]
D3D_WORLD[#g_aOldwater] = \
D3D_WORLD[#g_aNewwater].duplicate()
D3D_WORLD[#g_aNewwater] = aTemp

Figure 2: Managing exchange between old and new water arrays per-
frame.

1.3.2 Wave Propogation
Once this system is in place, the trick to creating waves is
then two-fold. The first is to choose a point, or set of
points, on the oldWater array, and assign a non-zero
height to the element in that position. This creates a
‘spike’ or a ‘dent’ in the height-field depending on the
seed value’s sign.
Next, the values from the oldWater array are used to
replace values in the newWater array, by sampling the
neighbors of the cell in the array in both the vertical and
horizontal directions. In simple terms, the value in the
newWater array will be the value in the oldWater array
modified by the neighboring values in the oldWater array.
This created waves that ripple outward concentrically if a
single point is used as a seed value, or that undulate as
linear waves if a row of seed values is placed into the
oldWater array. When the frames cycle, the newWater
array is copied into the oldArray and the next set of waves
is computed from the existing values.
This would produce waves that flow in perpetuity were it
not for the fact that each time the average of neighboring
values is taken, a dampening factor is applied to reduce
the strength of the wave. Depending on this value, the
fluid can appear to be highly elastic, or very viscous.
Dampening values between 1.05 and 1.5 seem to give the
best visual result for standard water, assuming a frame-
rate of approximately 30FPS. The algorithm for wave
processing is presented in Figure 3.

-- Process Water Arrays

on ghProcessWaterArrays
repeat with cy = 1 to \
D3D_WORLD[#g_iWaterHeight]
repeat with cx = 1 to \
D3D_WORLD[#g_iWaterWidth]

x = cx - 1
y = cy - 1

--add up all the neighboring water
--values

iXminus1 = x-1
if iXminus1 < 0 then iXminus1 = 0
iXminus2 = x-2
if iXminus2 < 0 then iXminus2 = 0
iYminus1 = y-1
if iYminus1 < 0 then iYminus1 = 0
iYminus2 = y-2
if iYminus2 < 0 then iYminus2 = 0

iXplus1 = x+1
if iXplus1 >= \
 D3D_WORLD[#g_iWaterWidth] then \
 iXplus1 = \
 D3D_WORLD[#g_iWaterWidth]-1

iXplus2 = x+2
if iXplus2 >= \
 D3D_WORLD[#g_iWaterWidth] then \
 iXplus2 = \
 D3D_WORLD[#g_iWaterWidth]-1

iYplus1 = y+1
if iYplus1 >= \
 D3D_WORLD[#g_iWaterHeight] then \
 iYplus1 = \
 D3D_WORLD[#g_iWaterHeight]-1

iYplus2 = y+2
 if iYplus2 >= \
 D3D_WORLD[#g_iWaterHeight] then \
 iYplus2 = \
 D3D_WORLD[#g_iWaterHeight]-1

iValue = \
D3D_WORLD[#g_aOldwater][((y)*\
D3D_WORLD[#g_iWaterWidth])+iXminus1+1]

iValue = iValue + \
D3D_WORLD[#g_aOldwater][((y)*\
D3D_WORLD[#g_iWaterWidth])+iXplus1 +1]

iValue = iValue + \
D3D_WORLD[#g_aOldwater][((iYminus1)*\
D3D_WORLD[#g_iWaterWidth])+x+1]

iValue = iValue + \
D3D_WORLD[#g_aOldwater][((iYplus1)*\
D3D_WORLD[#g_iWaterWidth])+x+1]

iValue = iValue * 0.5

--subtract the previous water value

iValue = iValue - \
D3D_WORLD[#g_aNewwater][(y*\
D3D_WORLD[#g_iWaterWidth])+x+1]

--dampen it

iValue = integer(float(iValue)/1.05)

--store it in the array

D3D_WORLD[#g_aNewwater][(y*\
D3D_WORLD[#g_iWaterWidth])+x+1] = iValue

end repeat
end repeat

end ghProcessWaterArrays

Figure 3: Manipulating water arrays for wave propagation based on
previous neighboring values. Lingo implementation of McCusky’s more
complete example in [9], optimized by reducing the sampling algorithm
to a single cell in each direction (as opposed to 2 or 3).

The advantages of array-based waves are based upon their
pattern of propagation. It is very easy to produce waves that
generate outward in rings from a single source, and it is also
easy to “bounce” waves off the sides of containers or pools, as
the edges of the array naturally produce this effect when using
the array oriented methodology. The disadvantages of this
approach are the long calculation time for the
processWaterArrays() function, and the memory overhead of
storing two height-maps. While the resolution in the
demonstration application (a 14x14 grid) can calculate relatively

quickly on modern hardware, this technique is not truly scalable
to high resolution meshes at interactive frame-rates.

It should be noted also that the geometry used for the water in
this demo is not optimal for the wave generation method
selected. For waves using array-based approaches, and in
particular attempting to do wave “rings”, the standard triangle
“patch” where all the triangles present their diagonals in the
same facing direction will introduce artifacts into the ripple
pattern. Figure 4 presents the standard mesh generation, and an
optimized mesh for correct waveform representation.

Figure 4: Non-optimal (left) and optimized (right) triangle interlay
patterns for water mesh to be used with droplet based wave forms and
array-based propagation.

Finally, it is possible, and sometimes desirable, to calculate a
low-resolution water array for use with a higher resolution mesh.
This can have the advantage of processing the water arrays very
quickly, but controlling a mesh of greater resolution, which can
therefore look smoother onscreen. This has the effect of
“rounding” or “smoothing” the waves, as the mesh vertices that
fall in-between the points in the water arrays generally take the
weighted average of the two closest points along the x- and y-
axis. In this way, the water array can be thought of as a ‘control
mesh’ relative to the actual surface, in a similar manner to the
#meshDeform modifier in the Shockwave3D environment.

2 REFRACTION

2.1 SURFACES AND REFRACTIVE RAY
CALCULATION

The basic “look and feel” of water (or for that manner any
transparent liquid) comes from a combination of its
refractive and reflective properties. Refraction is a
recognition of the fact that as light enters the surface of
the liquid, it is bent, or refracted, before reaching the
bottom of the container that holds the liquid. Several
approaches for simulating this physical phenomenon exist
in computer graphics, the most recent of which focus on
using a combination of vertex and pixel shaded
techniques to calculate the offset, or refraction, between

the point at which light strikes a surface, and where on the
bottom of the container the light would land.
The physics formulas for light bending can be
significantly involved. A brief summation (and one that
ignores internal currents and movement’s of a 3-
dimensional body of water) is Snell’s Law. This theorem
describes the two environments that the light passes
through (the air and then the water) as each having an
index of refraction n. For a perfect vacuum, n=1.000.
Water is generally in the range of n = 1.3333. For a
completely smooth surface, the calculation of Snell’s Law
can be computed using the formula in Fig 5:

)sin(*)sin(* 2211 θθ nn =

Figure 5: Basic formula of Snell’s Law, for light traveling between two
surfaces with differing refractive properties.

Using this representation falls short, however, in
computing a convoluted surface. Instead, the approach
that Vlachos and Mitchell implement in their construction
of a water simulation [10] rotates the axis around which
the angles are calculated to be planar with the normal of
the surface at the point of intersection. This is in fact a
practical matter that most such simulations implement.
Thus, 1θ is not the angle of incidence from the world Y-
axis, but rather the angle between the eye-vector of the
viewer and the normal of the water surface for that
particular vertex (or pixel). This forms the basis of
computing the refracted ray from the incoming ray
between intersection and viewer. This is implemented in
the code presented in figure 6:

--compute camera view

VectCamPos = pSprite.camera.\
 transform.position
vertex_current = lWaterVertex[cnt]
camera_ray = VectCamPos - vertex_current
camera_ray = camera_ray.getnormalized()

tmpf = 1.0 / \
float(sqrt(camera_ray.x*camera_ray.x+\
 camera_ray.y*camera_ray.y + \
 camera_ray.z*camera_ray.z))

camera_ray.x = (camera_ray.x *tmpf)

camera_ray.y = (camera_ray.y *tmpf)
camera_ray.z = (camera_ray.z *tmpf)
camera_ray = camera_ray.getNormalized()

--compute N.I

tmpf = vertex_normal.x*camera_ray.x+\
 vertex_normal.y*camera_ray.y + \
 vertex_normal.z*camera_ray.z

tmpf2 = 1.0 - ((0.5625) * (1.0-\
 (tmpf*tmpf)))
tmpf2 = float(sqrt(tmpf2))
tmpf2 = (0.75*tmpf) - tmpf2
norm = vector(0,0,0)

norm.x = (tmpf2*vertex_normal.x) – \
 (0.75*camera_ray.x)
norm.y = (tmpf2*vertex_normal.y) – \
 (0.75*camera_ray.y)
norm.z = (tmpf2*vertex_normal.z) – \
 (0.75*camera_ray.z)
tmpf2 = 1.0 / float(sqrt(norm.x*\
 norm.x + norm.y*norm.y +\
 norm.z*norm.z))
norm.x = norm.x*tmpf2
norm.y = norm.y*tmpf2
norm.z = norm.z*tmpf2

--point on surface

mInc =1.0/((D3D_WORLD[#g_iWATERWIDTH]\
) -1.0)
nInc=1.0/((D3D_WORLD[#g_iWATERHEIGHT]\
) -1.0)
tmpv = vector(0,0,0)
tmpv.x = ((j*mInc)*0.998+0.001) * \
 D3D_WORLD[#g_fWaterAspect]
tmpv.y = (i*nInc)*0.998+0.001
tmpv.z = 0.0

Figure 6: Implementation of Snell’s Law on a per-vertex basis. Adapted
from C/C++ source code by Vlachos and Mitchell in [10].

While this implementation is correct, it is computationally
intensive. It is necessary to perform these steps if
projected texturing is desired, as the calculation of N.I is
particularly critical. For implementations that aren’t
trying to simulate a box-style container, and are only
concerned with the illusion of water overtop of a flat floor
texture, significant optimizations can be made, as noted
by Anton Pieter van Grootel [11]. A substantially
simplified implementation using this approach is
presented in Figure 7:

refracted_ray = -(vertex_normal * \
 D3D_WORLD[#g_fRefractCoeff] + \
 camera_ray)

refracted_ray = \
refracted_ray.getnormalized()

final_depth = pInitialDepth +\
 (vertex_current.y - \
 D3D_WORLD[#g_aNewwater][(i)*\
 D3D_WORLD[#g_iWATERWIDTH]+j+1])

t = final_depth /

1θ

2θ

1natmosphere =

2nwater =

Light Ray

 float(refracted_ray.y)

map_x = vertex_current.x + \
 refracted_ray.x*t
map_z = vertex_current.z + \
 refracted_ray.z*t

texCoord[1] = (map_x – \
 D3D_WORLD[#g_fXI])*\
(D3D_WORLD[#g_fInterpolationFactorX]/\
(1.000/D3D_WORLD[#g_fTexRepeatU]))

texCoord[2] = (map_z –
 D3D_WORLD[#g_fZE])*\
(D3D_WORLD[#g_fInterpolationFactorZ]/\
(1.000/D3D_WORLD[#g_fTexRepeatV]))

Figure 7: Implementation of Snell’s Law on a per-vertex basis. Adapted
from source code by Anton Pieter van Grootel in [11].

Note here that we are not technically calculating Snell’s
Law: van Grootel has interestingly noted that a quick
approximation of the formal))sin(*33arcsin(1.3 1θ is to
use refracted_ray = -(vertex_normal * refraction_coeff +
camera_ray), where refraction_coeff is just a scalar,
thereby faking Snell's law without the overhead of
trigonometry. This greatly simplifies the necessary
calculations, but does not provide enough information to
simulate the sides of a container in map coordinate space
in and of itself. Still, the effect is almost as compelling at
significantly reduced computational intensity.

2.2 TEXTURE MAPPING AND COORDINATE
LOOKUPS

The previos figure also featured the base calculation of
texture coordinates for each vertex, offset by bending of
the refractive ray. For each vertex, the algorithm
computes a texCoord consisting of a u/v pair. It should be
noted that this author has slightly modified van Grootel’s
original implementation to account for a repeating texture
across the bottom of the water surface. In the demo file,
users can set D3D_WORLD[#g_bUseProjectiveTex-
turing] to false to see this technique in action.

2.3 SIMULATION OF BASIC CONTAINERS
The above technique, however, does not account for
perspective correction in the texture lookup. More
correctly, it does not account for the refractive rays to
strike the sides of a container rather than the bottom. For
liquids in simple containers, such as a pool, this is a
substantial shortcoming.
Using information from the original work by Vlachos and
Mitchell, it is entirely possible to re-implement their
solution in Shockwave3D. Their solution to this issue
revolves around the concept that the refracted ray will hit
one of 5 sides of a container: one of the four walls, or the

floor, and then shifts the texture coordinate lookup
accordingly. Thus, things that hit the floor map to the
center area of a texture, and the walls to the outlying
areas. Camera position and surface normal (through
calculation of N.I) is used to only show sides that would
be visible from that angle. Thus, this approach simulates
the look of a 3D container using texture lookups, rather
than geometry. While not as detailed as a full geometric
mesh, this technique can produce very realistic results,
with only minor inperfections. The algorithm for
determining wall intersection and u/v coordinate lookup is
presented in Figure 8.

 --point on surface

mInc = 1.0/((D3D_WORLD[#g_iWATERWIDTH])-\
1.0)
nInc = 1.0/((D3D_WORLD[#g_iWATERHEIGHT])-\
1.0)

tmpv = vector(0,0,0)
tmpv.x = ((j*mInc)*0.998+0.001) *
 D3D_WORLD[#g_fWaterAspect]
tmpv.y = (i*nInc)*0.998+0.001
tmpv.z = 0.0

/* Intersect with left plane (-1 0 0 0) */

if (norm.x = 0.0) then --Parallel to plane
 dist[1] = the maxInteger
else
 dist[1] = (tmpv.x) / (-norm.x)
end if

if (dist[1] < 0.0) then --If behind ray
 dist[1] = the maxInteger
end if

/* Intersect with right plane (-1 0 0 -1)*/

if (norm.x = 0.0) then --Parallel to plane
 dist[2] = the maxInteger
else
 dist[2] = (-D3D_WORLD[#g_fWaterAspect] +
 tmpv.x) / (-norm.x)
end if
if (dist[2] < 0.0) then --If behind ray
 dist[2] = the maxInteger
end if

/* Intersect with bottom plane (0 -1 0 0)*/

if (norm.z = 0.0) then --Parallel to plane
 dist[3] = the maxInteger
else
 dist[3] = (tmpv.y) / (-norm.z)
end if
if (dist[3] < 0.0) then --If behind ray
 dist[3] = the maxInteger
end if

/* Intersect with top plane (0 -1 0 -1) */

if (norm.z = 0.0) then --Parallel to plane
 dist[4] = the maxInteger
else
 dist[4] = (-1.0 + tmpv.y) / (-norm.z)
end if
if (dist[4] < 0.0) then --If behind ray

 dist[4] = the maxInteger
end if

/* Intersect with floor plane (0 0 -1 1) */

dist[5] = (D3D_WORLD[#g_fWaterDepth] +
 tmpv.z) / (-norm.y)
 if (dist[5] < 0.0) then --//If behind ray
 dist[5] = the maxInteger
end if

--/* Find closest wall */

tmpi = 1
if (dist[2] < dist[tmpi]) then
 tmpi = 2
end if
if (dist[3] < dist[tmpi]) then
 tmpi = 3
end if
if (dist[4] < dist[tmpi]) then
 tmpi = 4
end if
if (dist[5] < dist[tmpi]) then
 tmpi = 5
end if

--/* Floor */

if (tmpi = 5) then
tmpv.x = tmpv.x + norm.x*dist[tmpi]
tmpv.y = tmpv.y + norm.z*dist[tmpi]
tmpv.z = tmpv.z + norm.y*dist[tmpi]

--Use y and z to figure out texture cords

texCoord[1] = tmpv.x/ \
 D3D_WORLD[#g_fWaterAspect]*0.5 + 0.25
texCoord[2] = tmpv.y*0.5 + 0.25

--/* Left Wall */

else if (tmpi = 1) then
tmpv.x = tmpv.x + norm.x*dist[tmpi]
tmpv.y = tmpv.y + norm.z*dist[tmpi]
tmpv.z = norm.y*dist[tmpi]

--Use y and z to figure out texture coords

texCoord[1] = -0.25*tmpv.z/ \
 D3D_WORLD[#g_fWaterDepth]
texCoord[2] = ((texCoord[1])) + \
 (tmpv.y*((1.0-2.0*texCoord[1])))

--/* Right Wall */

else if (tmpi = 2) then
tmpv.x = tmpv.x + norm.x*dist[tmpi]
tmpv.y = tmpv.y + norm.z*dist[tmpi]
tmpv.z = norm.y*dist[tmpi]

--Use y and z to figure out texture coords

texCoord[1] = -0.25*tmpv.z/ \
 D3D_WORLD[#g_fWaterDepth]
texCoord[2] = ((texCoord[1])) + \
 (tmpv.y*((1.0-2.0*texCoord[1])))
texCoord[1] = 1.0 - texCoord[1]

--/* Bottom Wall */

else if (tmpi = 3) then
tmpv.x = tmpv.x + norm.x*dist[tmpi]
tmpv.y = tmpv.y + norm.z*dist[tmpi]
tmpv.z = norm.y*dist[tmpi]

--Use x and z to figure out texture coords

texCoord[2] = -0.25*tmpv.z/ \
 D3D_WORLD[#g_fWaterDepth]
texCoord[1] = ((texCoord[2])) + \
 (tmpv.x/D3D_WORLD[#g_fWaterAspect]*\
 ((1.0-2.0*texCoord[2])))

--/* Top Wall */

else if (tmpi = 4) then
tmpv.x = tmpv.x + norm.x*dist[tmpi]
tmpv.y = tmpv.y + norm.z*dist[tmpi]
tmpv.z = norm.y*dist[tmpi]

--Use x and z to figure out texture coords

texCoord[2] = -0.25*tmpv.z/\
 D3D_WORLD[#g_fWaterDepth]
texCoord[1] = ((texCoord[2])) + \
 (tmpv.x/D3D_WORLD[#g_fWaterAspect]*\
 ((1.0-2.0*texCoord[2])))
texCoord[2] = 1.0 - texCoord[2]
end if

Figure 8: Implementation of simple container simulation on a per-vertex
basis. Adapted from C/C++ source code by Vlachos and Mitchell in
[10].

3 REFLECTION

3.1 TEXTURE MAP CALCULATION
The second property that any water simulation needs to
account for in order to display a semi-realistic looking
liquid is reflection. Water not only bends entering light, it
also reflects it back towards the viewer. This demo
computes reflected light on a per-vertex algorithm, in the
same way it does for refraction. The code to generate a
u/v pair for reflection is presented in figure 9:

-- reflection

dotCamVertexNormal = camera_ray.dot(\
 vertex_normal)
reflected_ray = 2.0 *dotCamVertexNormal* \
 vertex_normal - camera_ray
reflected_ray = \
 reflected_ray.getnormalized()

texCoord[1] = (reflected_ray.y + 1.0) / 2.0
texCoord[2] = (reflected_ray.y + 1.0) / 2.0

Figure 9: Implementation of reflective texture coordinates. Adapted
from source code by Anton Pieter van Grootel in [11].

This manner of texture map calculation greatly purturbes
the underlying texture (and this solution is further

modified by the author to use the y coordinate for both u
and v texture coordinate lookups rather than tying u to
either x or z as per the original implementation, which
produces a more chaotic effect). The reflective texture is
then blended with the original texture as a second texture
layer. The exact blend is specified in the D3D_WORLD[
#g_iReflectBlend] variable that is set in the
startmovie script. Figure 9 shows the simulation running
with a reflect blend level of 100 (totally reflective), 50
(half-and-half blend between reflective and refractive
textures), and 0 (no reflection). NOTE: the blending of
the texture, with separate texture coordinates is only

Figure 10: Water with a base refract map and an overlaid reflect map,
with reflect at 100% opacity (top-left), 50% opacity (top-right), 0%
opacity (bottom-left), and the simulation default of 35% (bottom-right).

possible in the Shockwave 3D environment if the
underlying mesh is constructed using the undocumented
#layers argument to the newMesh() command [12],
which specifices the number of texture coordinate layers
to assign to the mesh. For this reason, the mesh creation
script is modified from its original implementation by
Catanese [13].

3.2 TEXTURE MAP GENERATION
The water demo presented here uses a static reflect map.
It would be possible, using a variety of techniques, to use
cameras in the 3D scene to take images or snapshots at
startup, and to use those images to construct a more
complete reflect map of the environment. In engines that
support render-to-texture functionality, this can be done in
real-time. Using such techniques could add a further
element of realism to the reflection map than is presented
here, although the chaotic nature of this particular method
of texture coordinate calculation may make such gains of
negligible value, if the visual impact of more complete
reflections is not discernable.

4 2D WAVE TEXTURING
As a final added detail, the water simulation creates a
very low-res image that calculates the color of the wave at
a given vertex. This is presented as a very performance-
friendly way of simulating a Fresnel term, without any of
the calculation usually involved in computing such
solutions. It must be noted, however that increasing the
size of the texture drastically increases its computation
time, and images of sufficient size will bring the entire
simulation to a halt. By using the texture blurring
capabilities on modern graphics hardware, very low-res
images can produce acceptable results.
Essentially each of the vertices of the array can also be
though of as a pixel in an image. For each vertex, a color
is calculated and drawn to an image at that location. This
image is then overlaid as a third and final texture to the
water in the simulation. Color is calculated in one of two
ways, either by using a refract-map technique similar to
that presented in [9], or by using a simple height ramp (ie
based on the y-axis coordinate of the matching vertex).
Figure 11 shows sample of this kind of texture at a
resolution of 16x16 pixels, for 48 frames. (Note that the
images are generally only used as a texture in the 3D
world and not written out as images).

Figure 11: Water textures at 16x16 resolution and color-ramped from
blue to white based on vertex height.

5 FUTURE WORK

5.1 CAUSTICS
One area which this simulation completely ignores is the
development of a real-time caustics simulation. Such
work, like that by Guardado and Sanchez-Crespo[14],
could lend another level of realism to the simulation, and
further enhance the illusion of light playing across the
surface of the water. Imaging solutions could likely be
built to approximate the effect without the use of vertex

and pixel shaders for use in low-performance
environments.

5.2 REFLECT/REFRACT MAPS
The current implementation of a reflect texture and per-
vertex refract calculation, while somewhat optimal, is
often not as visually appealing as it could be at low mesh
resolutions. It is possible that mapping between the
vertices using additional textures and blurring would
produce more seamless results, and additional tricks with
mapping coordinates are certainly possible. This avenue
seems promising for further extending the effect without
significant overhead: if inter-vertex mapping solutions are
found to be optimal, the resolution of the overall mesh
could be reduced yet further.

6 CONCLUSION
This demo explores the combination of several current
techniques to construct a simulation of realistic water.
While the water produced here is visually acceptable, it
would be greatly enhanced (and operate significantly
faster) through a shading language. However, since many
environments still do not support such a language, this
implementation may provide a decent alternative until
that technology is more widely adopted. This water
simulation should provide some insight into how to
establish real-time water for other games and virtual
worlds that require such a visual effect.

References
[1] Max, N. Carla’s Island, animation, ACM
SIGGRAPH 81 Vidoe Review, 5, 1981. Referenced in
Computer Graphics, Principles and Practice, Second
Edition in C. Foley, et. al. Addison-Wesley, Reading,
Massachusetts. 1996.
[2] Isidoro, John, Alex Vlachos and Chris Brennan.
"Rendering Ocean Water“. 347-357. Direct3D ShaderX:
Vertex and Pixel Shader Tips and Tricks. Wolfgang F.
Engel, editor. Wordware Publishing, Plano, Texas. 2002.
[3] Finch, Mark. "Effective Water Simulation from
Physical Models". GPU Gems. Randima Fernando,
Editor. Addison-Wesley / Nvidia, Boston, Massachusetts.
2004.
[4] Dalmau, Daniel Sanchez-Crespo. p.644. Core
Technologies and Algorithms in Game Programming.
New Riders Publishing, Indianapolis, Indiana. 2004.
[5] Lefebvre, Sylvain. "Drops of Water and Texture
Sprites“. p.191-206. Shader X2: Shader Programming
Tips & Tricks with DirectX 9. Wolfgang F. Engel, editor.
Wordware Publishing, Plano, Texas. 2004.
[6] Snook, G. Real-Time 3D Terrain Engines using C++
and DirectX 9. p274-292. Charles River Media,
[7] Perlin, K. "An Image Synthesizer“ SIGGRAPH 85
287-296.

[8] Worley, Steven. "Cellular Texturing“ p141. Textur-
ing & Modelling: A Procedural Approach. 3rd Edition.
Ebert, et. al. Morgan Kauffman, Amsterdam. 2003.
[9] McCusky, M. P470-475. Special Effects Game
Programming with DirectX. The Premier Press Game
Development Series. Premier Press, 2002.
[10] Vlachos, Alex and Jason L. Mitchell. "Refraction
Mapping for Liquids in Containers". P. 594-599. Game
Programming Gems. Mark DeLoura, Editor. Charles
River Media, Rockland, Massachusetts. 2000.
[11] van Grootel, Anton Pieter. "How to Fake
Refraction?". Dir-Games-L Mailing List. University of
Georgia. 6/5/2003 Online: http://nuttybar.drama.uga.edu/
pipermail/dir3d-l/2003-June/003415.html
[12] Leske, Christopher. "Undocumented Feature".
Undocumented Lingo. 5/15/2003 Available Online:
http://www.director3d.de/2003/05/15.html
[13] Catanese, Paul. p741-746. Director’s Third
Dimension: Fundamentals of 3D Programming in
Director 8.5. Que, Indianapolis, Indiana. 2002.
[14] Guardado, Juan and Daniel Sanchez-Crespo.
"Rendering Water Caustics“. GPU Gems. Randima
Fernando, Editor. Addison-Wesley / Nvidia, Boston,
Massachusetts. 2004.

