

Raytracing in Lingo: Silly Spheres with Sexy Shadows

Andrew M Phelps

Information Technology Dept.
Rochester Institute of Technology

Rochester, NY, 14623
http://andysgi.rit.edu/

Abstract

This article describes the implementation of a
fully featured ray-tracing system within the
Director programming environment, complete
with shadows, reflection, specular highlights,
and transparency. Much of this engine is
adapted from earlier work by Stephens [1997]
with additional feature set and reorganization of
code by the author, based primarily on graphics
formalisms presented in what now are classic
texts by Glassner [1989] and Foley [1987, 1996].
The discussion of formal (and well published)
algorithms will be kept to a minimum, except
where the particular implementation in the Lingo
language is noteworthy. Further, this article
assumes basic knowledge of the Lingo
programming environment, Object Oriented
Programming (OOP) techniques of the Lingo
language, and basic mastery of programming
constructs such as functions and if/then/else
logic.
The article is split into 4 major sections, the first
describing the mathematical basics of the ray-
tracer itself, the second concerned with the
display mechanism of a render window and the
process of color calculation, the third which
discusses advanced or additional growth of the
algorithms for additional features, and the fourth
which talks about sampling mechanisms. Also
included is a ‘Future Work’ section describing
directions for this project to grow.

1 BASIC RAYTRACER THEORY AND
IMPLEMENTATION

1.1 TUTORIAL FILE SETUP
Ray-tracing has now been viable in computer graphics for
quite some time, with improvements to renderers happing
at the large firms such as Pixar and Alias | Wavefront
almost daily, and advanced techniques like motion-
blurring and super-sampling quite common. This project

implements a simple ray-tracer, and is intended for
students and other professionals to learn the basic
fundamentals of how the theory works. As such, this is
essentially a throwback to the ray-tracers of the early
1990’s, and it must be noted that it performs like one.
Ray-tracing in general, because of the number of
calculations involved, is a relatively slow process, and
this issue is exacerbated by the fact that Lingo is an
interpreted language. Nonetheless, this demo hopefully
provides a clear and concise picture of the inner-workings
of a rendering system, if not in real time.
The first thing to do is to play with the demo files.
Download and unzip the files into the same directory,
open the raytracer.dir file, start the movie, and type in the
message window the following command:
-- Welcome to Director --

RayTrace(300,300,4,0.75)

Press ‘Enter’. After a short amount of time you will see a
window pop up labeled ‘Render Window’, and it will
begin to trace the default scene line by line (referred to in
the formal literature as a ‘scanline renderer’). The
command you gave renders a scene 300 pixels wide, 300
pixels high, with 4 levels of ray reflection, and a 0.75
pixel blur. Note the time it takes on your machine, it is
certainly not a real-time engine.

Figure 1: Sample output from Raytracer.dir

1.2 BASIC MATHEMATICAL TRANSFORMS
The basis of the renderer comes from defining a three-
dimensional world. Most of this implementation is based
on the discussion of 3D Transforms by R. Stevens [1997].
While Stevens is implementing in Visual Basic, it is
interesting to note that most of the implementations are
completely language independent because they are
mathematically based, only the array syntax changes for
specifying a matrix.
Essentially this program begins with the basic object of a
Point, constructed in the Point3D function under the
“Matricies” script. The other key method in that script is
the Mat3Identity function, which creates the classic
Identity Matrix [1987]. Manipulation and projections of
the point then involves using the rest of the function in
this script to transform and project the point as needed by
the engine. This is accomplished, in essence, by creating
the points, creating a matrix, and then using the
Mat3Apply or Mat3ApplyFull function depending
on whether or not the fourth (scale) value of a point array
is 1. If a point has a scale of 1, then it is, by definition,
using global world coordinates, if it has a value other than
1, then it needs to be re-expressed using a value of 1 (‘re-
normalized’ in the commented code), and then
transformed.
A number of additional methods are built up in the
‘Matricies’ script that combine these function to produce
the actions common to 3D worlds, namely transform,
rotation, and scale. This script also provides the
functionality for points to be projected onto a 2D plane,
using the Mat3Project function, or, using a wrapper
for spherical coordinates, the Mat3PProject function.
These, combined with the global variable declarations in
the ‘StartMovie’ script, provide the basis for the world.
Most of these functions contain associated comment,
where V is an argument of type Point3D, and M is an
argument of type Matrix. For a more in-depth
explanation of the math involved in creating a world such
as this, refer to the references section at the end of this
document, as there are countless materials on 3D
graphics, matrices, and graphics engines available, many
implemented in Lingo already, and for additional
documentation and geometric proofs of these precise
methods, see Stephens original derivations [1997].

1.3 SCENE OBJECTS AND OBJECT
HEIRARCHY

The next step in creating the application is the creation of
objects in the scene, namely the collection of spheres and
the ground plane. Each object is created in a script name
obj(name_of_object), so a sphere would be created in
‘ObjSphere’, a plane in ‘ObjPlane’, etc. Additionally,
each of these objects set as its ancestor an object of type
ObjGeneric (see figure 2). This class encapsulates the
basic methods for setting attributes for the lighting
calculations, and also sets Boolean values for coding
clarity with regard to IsReflective and
IsTransparent. Each object implements four

functions, Initialize, Apply, RayDistance, and HitColor.
Initialize should be fairly straightforward; it is called from
the ‘DrawData’ script to instantiate the object.
Incidentally, objects are organized on an Objects list, so
the can be looped through later. The Apply function
takes an argument of type Matrix, and applies that matrix
to the coordinates of the object using the Mat3Apply
function described earlier. The object stores these
transformed coordinates in a separate Point3D object.
When the movie is started, the ‘DrawData’ script is
called. In this script, projecting the camera onto the Stage
creates a transform matrix, and this transform is then
applied to all of the objects in the list.

Figure 2: Object hierarchy of the scene-graph.

Objects are loaded with values to create different colors
and effects, according to the following table. Each of
these properties is set before the object is added to the list.

Table 1: Attributes of Scene Objects
PROPERTY DESCRIPTION

IsTransparent Boolean Flag, is the object
Transparent.

IsReflective Boolean Flag, is the object Reflective.

PSpecN, pKs Attributes for specular highlights.

pHitX, Y, Z Coordinate data for where an object is
hit with a ray.

Kdr, Kdg, Kdb Red, Green and Blue components for
diffuse lighting calculation.

Kar, Kag, Kab Red, Green, and Blue components for
ambient light calculation.

Krr, Krg, Krb Red, Green, and Blue components for
reflected light calculation.

Ktr, Ktg, Ktb Red, Green, and Blue components for
transparent light calculation.

n1, n2, nt Constants for reflection and refraction
calculations.

Objects List

ObjSphere ObjPlane

ObjGeneric

Once these objects exist in their list, and hold their project
coordinates, we are ready to move on in creating the rest
of the elements necessary to complete the scene, namely
the lights and the viewpoint.

1.4 SCENE LIGHTS AND LIGHTING
The lights in the scene are very simple objects, that hold 2
Point3D values, one for the original coordinates, and one
for the coordinates once projected by the viewpoint
matrix. This is different from many lighting systems that
store color and decay information directly within the
lights themselves. In the effort of simplicity, this system
uses single global values to control much of the lights
behavior, namely the ambient values, and the
LightKDist value, which is basically a mechanism for
how ‘bright’ the light will appear on object, and how
quickly it will fall to shadow. The following table
descripbes the lighting values and their effects on the
system.

 Table 2: Global Lighting Variables
VARIABLE DESCRIPTION

LightKdist Numerical integer describing the fall.

LightIar, LightIab,
LightIag

Red,Green,and Blue attributes for
ambient light.

BackR, BackG,
BackB

Red, Green, and Blue components of
background color (before applying
ambient contribution).

1.5 CAMERAS AND CLIPPING PLANES
There really in essence is not a ‘camera’ in the sense of
most traditional 3D packages. There is simply a
viewpoint that is expressed in spherical coordinates, and a
matrix that is created from projecting this point onto the
2D viewing plane (in our case, the Render Window).
Additionally, it is possible to move the point that the
viewpoint is ‘looking at’ by changing the Focus(X,Y,Z)
coordinates. All of the viewpoint variables are set in the
‘StartMovie’ script, the Projector Matrix is created by
calling Mat3Pproject and feeding it the coordinates of
the viewpoint, the coordinates of the viewpoint focus, and
the nature of the world coordinate system (in this case we
are using a ‘Y-up’ world, where the Y axis points up, the
X axis moves across the screen, and the Z axis comes out
towards the viewer).

1.6 WORLD CREATION : PUTTING IT ALL
TOGETHER

So in essence these are the parts of the program that are
responsible for the creation of the scene and getting the
scene to a point that it can be rendered at the desired
resolution. All of this occurs without any input from the
user of the software, and occurs in the modules of the
program as demonstrated in figure 3. First, global

variables are set that describe the viewpoint and the center
of the scene, scene objects are instantiated, as well as light
objects, and both objects and lights are held in their
respective lists. This occurs inside the DrawData script.
All of the objects and lights have their respective
coordinates projected and stored in their internal
structures as the TransPoint[x] property. Following
through the code should be relatively straightforward
based on the flowchart and the associated comments in
the lingo code. At the end of the completion of the
DrawData script, all of the required globals and objects
for rendering are ready for rendering, and the movie
awaits user input, namely the RayTrace() command
that you gave when starting the movie.

Table 3: Global Viewpoint Variables
VARIABLE DESCRIPTION

EyeR The first part of the viewpoint
coordinates, expressed in spherical
coordinates. This value represents the
distance from the origin of the world
(set in Focus X, Y and Z)

EyePhi This is the angle between the
viewpoint and the XZ plane (assuming
a Y-up world, which this is).

EyeTheta The angle representing rotation of the
viewpoint around the Y axis.

FocusX, FocusY,
FocusZ

Point in 3D space that the viewpoint is
centered on. .

Projector The Matrix returned by projecting the
coordinates above onto the viewing
plane. This matrix is then applied to
all objects and lights such that when
drawn on the plane they appear in
proper perspctive.

2 THE RENDER WINDOW AND PIXEL
PLOTTING

2.1 RENDER WINDOW AND LINGO
APAPTION TECHNIQUE

Typical ray-tracers have what is called a ‘render window’
that hold and display the scene as it is being calculated.
This movie tries to emulate that in Director using a
separate Movie In A Window (MIAW). This is a very
simple movie, containing only 2 scripts and 1 sprite. The
first script is what I consider a standard way to keep a
movie running on a single frame, which is the standard
‘go to the frame loop’ located in the ‘go_frame_loop’
script. The sprite is a cast member who is exactly 1 x 1
pixel square, and whose color is solid black (rgb 0,0,0).

Figure 3: Flowchart of world creation and startup.

The third and final script is a method that allows a given
pixel to be plotted at a precise RGB value. This is
accomplished in Lingo by allowing the script to position
the locH and locV of the pixel sprite (in essence placing it
on the stage) and setting the RGB color value of this pixel
(see figure 4). Because the image size is variable, this
movie uses the same sprite over and over again rather that
a separate sprite for each pixel. To achieve this illusion,
you will notice that the pixel sprite has trails turned on,
thus presenting the illusion that we are drawing separate
pixels to the render window when in fact we are drawing
the same one over and over. The movie starts with the
pixel sprite located off the stage.

on plot_pixel x, y, r, g, b
 Sprite(1).locH = x
 Sprite(1).locV = y
 Sprite(1).color = rgb(r,g,b)
 updatestage
end plot_pixel

Figure 4: sample code to plot a pixel on the render
window stage.

The main rendering loop (called from the RayTrace
command you issues at the start of this article) uses a
double loop to plot every pixel on in the render view,
from left to right, top to bottom. This produces the effect
of the image being ‘built in lines’ and is indicative of this
generation of ray-tracers, where each pixel value is
sampled individually.

2.2 THE RENDERING LOOP
The real underlying issue of course, is not looping
through the pixels and plotting them but in knowing
which color to plot them with. This is finally the
intersection of the 3D world with the 2D image plane, and
the idea is to some degree a simple one. What this
program does, in its simplest form is send out rays from
the center of projection, through each pixel, and into the
scene. The program then checks to see how far into the
scene the ray travels, if it reaches an arbitrary infinite
value, then it can be assumed that it did not hit anything,
and the background should be rendered. If the distance
comes back as less than infinite, then the color is
calculated based on which object was hit and how that
object was lit (see figure 5).

Figure 5: Basic Ray-Tracing Theory.

This system then, has the added bonus of built in
overlapping and culling of objects, since rays can hit one
and only one object first. The process of calculating the
ray distance, and the color of an object hit, is exceedingly
intensive, and is implemented in the sample file as
follows:
For each pixel, a call is made to the RayColor function,
which in turn calls the TraceRay function. RayColor
is used to average the results from multiple calls to
TraceRay, sampling a pixel more than once based on
the number of lights in the scene. TraceRay is truly the
start of the ray-tracing process, as it loops through each
object in the scene, and recursively tries to find the
shortest distance by using the RayDistance method of
each object on the list. The RayDistance method is
built using the classic quadratic for this purpose, derived
in full in Foley’s master work [1987, 1996] and
implemented by Stevens [1997] and many others. The

DrawData

StartMovie
Create global variables
for Engine.

Create Lights and
add to Lights list.

Set viewpoint and
focus globals.

Set globals for
ambient lights.

Create Scene
Objects.
Set all properties,
and add to Objects
list

Create Projector
Matrix.

Transform all Objects
(loop through Obj list)

Transform all lights.
(loop through lights
list).

Calculate incident
values.

Ready for Rendering.

Scene Object

Light Rays

Center of
Projection

comments in this section of code should explain to some
degree the purpose of each calculation.
Once the minimum distance is obtained, and assuming
that distance is not infinite, the object that produced the
closest intersection with regards to the center of
projection is now the ‘active object’ as any other object
encountered would, by default, be behind the active one.
The TraceRay function then calls this objects
HitColor routine, to determine, at that point of
intersection, which is stored in the objects pHitY,
pHitY, and pHitZ properties from the previous call to
RayDistance. HitColor calculates the color of that
point be determining what color the object would be at
that location, again through algorithms well published and
documented [1997]. The first step in creating the illusion
is tracing a ray from the point of intersection to the light
source, and seeing if it gets there without interruption. If
it does, then it can be assumed that the light is shining on
the surface, if it does not then the surface is in shadow,
and as such there should be no diffuse value other than
the standard ambient value for the scene. Assuming that
the object is lit, the process for diffuse color is very
simple, it involves calculating the normal of the surface at
point of intersection, calculating a vector from that point
to the light source, and then examining the angle of
difference between these two vectors. If the angle is
large, then the surface faces away from the light and is
likely in very dim, otherwise, the reverse is true. To
measure this, the traditional approach is to take the dot
product of the two vectors and multiply them by the base
constant of the color of the object, modifying the colors
both positively and negatively to produce shading.
The specular highlights found in the system are simply
one further step along this idea, using a vector calculated
back from to the viewpoint from the point of intersection,
and using the dot product of this vector and a vector in the
mirror direction to the one described above, multiplied by
a constant to determine how ‘shiny’ the object is. This
produces the ‘plastic look’ common to ray tracing systems
before the addition of texture mapping techniques.

3 ADDITIONAL FEATURE SET

3.1 REFLECTION
Reflection is usually the first ‘goodie’ that people
implement in systems such as these, and it is implemented
faithfully here. The reason for this is that it is the first
logical follow-on to the idea of tracing rays. Essentially,
instead of only calculating the color at the point where a
ray hits an object, a new ray from that ‘hit location’ is
traced back through the scene to see if it intersects another
object. If another object is encountered, that color is
calculated and averaged with the first color using a
constant that is set to determine how reflective we want
the object to look. The greater the constant, the greater
the effect of the second color, and thus the less influence
the first has. To some degree, this mimics the way light is

bent by reflective objects in the real world, and can
provide a convincing illusion if the constants and lighting
are set at believable levels [1989].
To accomplish this, this program implements a technique
often found in graphics systems and more traditional
computer science program architecture, but one that this
author has rarely used in standard multimedia
programming: recursion. The user of this system will
pass in the maximum number of times a ray is allowed to
‘bounce’, referred to as ‘ray-depth’. This attribute is
passed from the TraceRay function to an object’s
HitColor method when we calculate the color of an
initial ray intersection. The program will then (assuming
that the depth is not infinite) reduce this value by 1 and
call TraceRay again, this time with a starting location
not from the center of projection, but from the last
intersection of ray and object. This continues (assuming
that none of the rays run to infinity) until the ray-depth
value is depleted to zero. Note, that this can drastically
effect the overall performance of the system because
tuning this value to a high number causes the number of
calculations to grow, while there is very little visual effect
beyond a relatively low number of recursive iterations.
Also note the possibility that without the level being user
set, the possibility for 2 perfectly parallel, perfectly
reflective planes to trap a ray forever, and thus cause an
infinite loop.

3.2 TRANSPARENCY & REFRACTION
The final ‘illusion’ presented in this demo is that of
transparency, with refraction. This is achieved by
allowing the ray to pass through the object, and adjusting
the angle of the ray based on the inverse normal of the
surface and the constants set for the index of refraction.
The larger the difference between the first and second
constants (n1 and n2) the more the rays will ‘bend’.
Stevens describes this process in much greater detail
[1997], as does Foley [1987] and many other classic texts
on computer graphics techniques.

Figure 6: Pre-blur ray-tracer output.

4 PIXEL BLUR AND ANTI-ALIAS
ROUTINES

4.1 THE NEED FOR SAMPLING
The need for sampling becomes apparent when
considering an original render of the system (see figure
6). In this picture, the edges of the objects are ‘popped
out’ against the scene, producing ‘jaggies’ along the
edges of the objects. This occurs because a single pixel
can be one and only one color value, and when
calculating the pixels the system must choose weather a
pixel lies inside or outside an object. If the edge of the
object is at an angle or curves across the pixel grid, this
produces the effect seen above, described by Glassner as
‘Spatial Aliasing’ [1989].

4.2 PIXEL BLUR ROUTINES
The solution to this issue, in its simplest form, is to
sample a pixel more than once and then average the
results of those samples together to get the final solution.
In essence, if the pixel grid is of a finer resolution, then
the appearance will be better and the aliasing effects
minimized. This solution samples a pixel 5 times, once at
its center and 4 times at an offset from the center, one in
each direction. This offset is the blur arguments passed to
the engine at render-time, and should be greater then zero,
but not more than one full pixel, else stippling effects will
occur. Note that (a) a system that only used additional
sampling rays where it was deemed necessary because of
a large variation in the initial sample set would be more
effective [1989] and that (b) this solves the issue of single
frame aliasing only, it does not solve motion based
artifacts should multiple stills from this engine be played
back in sequence [1987, 1997][1987].

5 CONCLUSIONS
This system is unique mainly in its implementation
choice, it is intended as an introduction to the ideas of
traditional computer graphics for a non-traditional
audience. This paper and the associated application have
hopefully provided the reader with a basic understanding
of the parts of the system, and the resources and
references to explore the formal literature on the subject
in a meaningful way. Additionally, is has demonstrated
as an aside that the Lingo language is fully capable of
implementing the types of systems that are often regarded
as a suitable ‘level of difficulty’ for undergraduate
computer science or graphics courses, and that it has
grown into a fully featured programming environment.
While the performance of the system is certainly not
ideal, this performance comes more from the algorithms
used for calculation and sampling than any overall
deficiency in the language. A much faster
implementation could like be obtained with more modern
algorithms and recursion techniques, however this may be
counter productive to the audience, as it would likely be

less understandable to a novice. Finally it has been
suggested, and is interesting to this author, to combine
this engine with the author’s other work in artificial life to
allow visualization of scenes that are allowed to evolve on
their own through the use of genetic algorithms.

6 FUTURE WORK
This work is the first work in creating a whole-scale
animation system in director. A real-time wire-frame
modeler and time track are also underway. Obviously,
such a system is not for production use, but would be a
valuable educational tool in teaching students how these
systems work, that they are not ‘magic’. Additionally,
this project serves as an introduction to graphics concepts
and algorithms; from here students could easily begin
research into real-time solutions in a variety of languages.
I would like to add to this a more complete pixel sampling
mechanism that discusses Stochastic sampling and
weighting of differences for better edge resolution, as
well as providing a performance increase. Also of
primary import is also the inclusion of texture mapping
support, in a most basic sense, to serve as an example for
more complex engines. Finally, the ability to load and
save scenes from text files in a pre-rendered state,
possibly using the VRML or other simple format, coupled
with the ability to save the rendered image in a .jpg or .gif
format for use on the web, would further the benefit of
this application as an educational tool.

Acknowledgments
I would like to acknowledge my colleagues at the
Rochester Institute of Technology, and in particular
Professor Steve Kurtz, who shares my interest and
passion for writing graphics programs and extending
Lingo into this arena. He has served as a capable
sounding board and mentor for a number of years, and I
thank him for it. I would also thank Rod Stevens for his
excellent text describing the implementation of graphics
algorithms in Visual Basic. His text has served as an
invaluable resource since I first acquired my copy in
1999. Finally I would thank Professor Ronald Coleman at
BGSU for getting this artist interested in graphics
programming in the first place.

References
R. Stevens (1997). Visual Basic Graphics Programming.
397-617. New York, NY: John Wiley & Sons, Inc.
James D. Foley, Andries van Dam, Steven K. Feiner, John
F. Hughes. (1987, 1996 2nd revised printing).Computer
Graphics Principles and Practice – 2nd Edition in C. The
Systems Programming Series. Washington, DC: Spartan
Books.

Andrew S. Glassner, editor. (1989). An Introduction to
Ray Tracing. San Francisco, California: Morgan
Kaufman.

Annotated Bibliography
[AA] Anti-Aliasing; [E] Everything; [L] Lingo based 3D
Code; [M] Mathematics; [R] Raytracing.
1. Cole, David. (2000) Dave’s 3D Engine v. 7.

Online. http://www.dubbus.com/devnull/3D. [M][L]
2. Edgerton, P.A & W.S. Hall. (1999) Computer

Graphics: Mathematical First Steps Essex, England:
Prentice Hall. [M]

3. Lithium. (1999-2001) Three Dimensioinal Shading.
Online. http://www.gamedev.net/ [R]

4. Lithium. (1999-2001) Three Dimensional Rotations.
Online. http://www.gamedev.net/ [M]

5. McNally, Seumas. (1999-2001) 3D Matrix Math
Demystified. Online. http://www.gamedev.net/ [M]

6. Perez, Adrian, Dan Royer. Advanced 3-D Game
Programming Using Direct X 7.0. Plano, Texas:
Wordware Publishing. [M][R]

7. Rodgers, David F. And J.Alan Adams. (1976, 1990)
Mathematical Elements for Computer Graphics 2nd
Ed. New York, New York: McGraw Hill. [M]

8. Rodgers, David F. (1985) Procedural Elements for
Computer Graphics. New York, New York: McGraw
Hill. [M]

9. Swan, Barry. (2000) T3D Engine. Online.
http://www.theburrow.co.uk/t3dtesters/. [L]

10. Tamahori, Che. (1999) How to Cook 3D in Director.
Online. http://www.sfx.co.nz/tamahori/thought/
shock_3d_howto.html. [L][M]

11. Watt, Alan and Fabio Policarpo. (2001) 3D Games:
Real Time Rendering and Software Technology.
New York, New York: Addison-Wesley ACM Press.
[M][R]

12. Zavatone, Alex. Inside Zavs Brain: 3D Director.
Online. www.director-online.com/accessArticle.cfm
?id=286. [L]

	BASIC RAYTRACER THEORY AND IMPLEMENTATION
	TUTORIAL FILE SETUP
	BASIC MATHEMATICAL TRANSFORMS
	SCENE OBJECTS AND OBJECT HEIRARCHY
	SCENE LIGHTS AND LIGHTING
	CAMERAS AND CLIPPING PLANES
	WORLD CREATION : PUTTING IT ALL TOGETHER

	THE RENDER WINDOW AND PIXEL PLOTTING
	RENDER WINDOW AND LINGO APAPTION TECHNIQUE
	THE RENDERING LOOP

	ADDITIONAL FEATURE SET
	REFLECTION
	TRANSPARENCY & REFRACTION

	PIXEL BLUR AND ANTI-ALIAS ROUTINES
	THE NEED FOR SAMPLING
	PIXEL BLUR ROUTINES

	CONCLUSIONS
	FUTURE WORK
	
	References

