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Abstract 
 

This article describes the implementation of a 
fully featured ray-tracing system within the 
Director programming environment, complete 
with shadows, reflection, specular highlights, 
and transparency.  Much of this engine is 
adapted from earlier work by Stephens [1997] 
with additional feature set and reorganization of 
code by the author, based primarily on graphics 
formalisms presented in what now are classic 
texts by Glassner [1989] and Foley [1987, 1996].  
The discussion of formal (and well published) 
algorithms will be kept to a minimum, except 
where the particular implementation in the Lingo 
language is noteworthy.  Further, this article 
assumes basic knowledge of the Lingo 
programming environment, Object Oriented 
Programming (OOP) techniques of the Lingo 
language, and basic mastery of programming 
constructs such as functions and if/then/else 
logic.   
The article is split into 4 major sections, the first 
describing the mathematical basics of the ray-
tracer itself, the second concerned with the 
display mechanism of a render window and the 
process of color calculation, the third which 
discusses advanced or additional growth of the 
algorithms for additional features, and the fourth 
which talks about sampling mechanisms.  Also 
included is a ‘Future Work’ section describing 
directions for this project to grow.  

1 BASIC RAYTRACER THEORY AND   
IMPLEMENTATION 

1.1 TUTORIAL FILE SETUP 
Ray-tracing has now been viable in computer graphics for 
quite some time, with improvements to renderers happing 
at the large firms such as Pixar and Alias | Wavefront 
almost daily, and advanced techniques like motion-
blurring and super-sampling quite common.  This project 

implements a simple ray-tracer, and is intended for 
students and other professionals to learn the basic 
fundamentals of how the theory works.  As such, this is 
essentially a throwback to the ray-tracers of the early 
1990’s, and it must be noted that it performs like one.  
Ray-tracing in general, because of the number of 
calculations involved, is a relatively slow process, and 
this issue is exacerbated by the fact that Lingo is an 
interpreted language.  Nonetheless, this demo hopefully 
provides a clear and concise picture of the inner-workings 
of a rendering system, if not in real time. 
The first thing to do is to play with the demo files. 
Download and unzip the files into the same directory, 
open the raytracer.dir file, start the movie, and type in the 
message window the following command: 
-- Welcome to Director -- 

RayTrace(300,300,4,0.75) 

 

Press ‘Enter’.  After a short amount of time you will see a 
window pop up labeled ‘Render Window’, and it will 
begin to trace the default scene line by line (referred to in 
the formal literature as a ‘scanline renderer’).  The 
command you gave renders a scene 300 pixels wide, 300 
pixels high, with 4 levels of ray reflection, and a 0.75 
pixel blur.  Note the time it takes on your machine, it is 
certainly not a real-time engine. 

 
Figure 1: Sample output from Raytracer.dir 



 

 

1.2 BASIC MATHEMATICAL TRANSFORMS 
The basis of the renderer comes from defining a three-
dimensional world.  Most of this implementation is based 
on the discussion of 3D Transforms by R. Stevens [1997].  
While Stevens is implementing in Visual Basic, it is 
interesting to note that most of the implementations are 
completely language independent because they are 
mathematically based, only the array syntax changes for 
specifying a matrix. 
Essentially this program begins with the basic object of a 
Point, constructed in the Point3D function under the 
“Matricies” script.  The other key method in that script is 
the Mat3Identity function, which creates the classic 
Identity Matrix [1987].  Manipulation and projections of 
the point then involves using the rest of the function in 
this script to transform and project the point as needed by 
the engine.  This is accomplished, in essence, by creating 
the points, creating a matrix, and then using the 
Mat3Apply or Mat3ApplyFull function depending 
on whether or not the fourth (scale) value of a point array 
is 1.  If a point has a scale of 1, then it is, by definition, 
using global world coordinates, if it has a value other than 
1, then it needs to be re-expressed using a value of 1 (‘re-
normalized’ in the commented code), and then 
transformed. 
A number of additional methods are built up in the 
‘Matricies’ script that combine these function to produce 
the actions common to 3D worlds, namely transform, 
rotation, and scale.  This script also provides the 
functionality for points to be projected onto a 2D plane, 
using the Mat3Project function, or, using a wrapper 
for spherical coordinates, the Mat3PProject function.  
These, combined with the global variable declarations in 
the ‘StartMovie’ script, provide the basis for the world. 
Most of these functions contain associated comment, 
where V is an argument of type Point3D, and M is an 
argument of type Matrix. For a more in-depth 
explanation of the math involved in creating a world such 
as this, refer to the references section at the end of this 
document, as there are countless materials on 3D 
graphics, matrices, and graphics engines available, many 
implemented in Lingo already, and for additional 
documentation and geometric proofs of these precise 
methods, see Stephens original derivations [1997]. 

1.3 SCENE OBJECTS AND OBJECT 
HEIRARCHY 

The next step in creating the application is the creation of 
objects in the scene, namely the collection of spheres and 
the ground plane.  Each object is created in a script name 
obj(name_of_object), so a sphere would be created in 
‘ObjSphere’, a plane in ‘ObjPlane’, etc.  Additionally, 
each of these objects set as its ancestor an object of type 
ObjGeneric (see figure 2).  This class encapsulates the 
basic methods for setting attributes for the lighting 
calculations, and also sets Boolean values for coding 
clarity with regard to IsReflective and 
IsTransparent.   Each object implements four 

functions, Initialize, Apply, RayDistance, and HitColor.  
Initialize should be fairly straightforward; it is called from 
the ‘DrawData’ script to instantiate the object.  
Incidentally, objects are organized on an Objects list, so 
the can be looped through later. The Apply function 
takes an argument of type Matrix, and applies that matrix 
to the coordinates of the object using the Mat3Apply 
function described earlier. The object stores these 
transformed coordinates in a separate Point3D object.  
When the movie is started, the ‘DrawData’ script is 
called.  In this script, projecting the camera onto the Stage 
creates a transform matrix, and this transform is then 
applied to all of the objects in the list. 

 
Figure 2: Object hierarchy of the scene-graph. 
 
Objects are loaded with values to create different colors 
and effects, according to the following table.  Each of 
these properties is set before the object is added to the list. 
 

Table 1: Attributes of Scene Objects 
PROPERTY DESCRIPTION 

IsTransparent Boolean Flag, is the object 
Transparent. 

IsReflective Boolean Flag, is the object Reflective. 

PSpecN, pKs Attributes for specular highlights. 

pHitX, Y, Z  Coordinate data for where an object is 
hit with a ray. 

Kdr, Kdg, Kdb Red, Green and Blue components for 
diffuse lighting calculation.   

Kar, Kag, Kab Red, Green, and Blue components for 
ambient light calculation. 

Krr, Krg, Krb Red, Green, and Blue components for 
reflected light calculation. 

Ktr, Ktg, Ktb Red, Green, and Blue components for 
transparent light calculation. 

n1, n2, nt Constants for reflection and refraction 
calculations. 
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Once these objects exist in their list, and hold their project 
coordinates, we are ready to move on in creating the rest 
of the elements necessary to complete the scene, namely 
the lights and the viewpoint. 

1.4 SCENE LIGHTS AND LIGHTING 
The lights in the scene are very simple objects, that hold 2 
Point3D values, one for the original coordinates, and one 
for the coordinates once projected by the viewpoint 
matrix.  This is different from many lighting systems that 
store color and decay information directly within the 
lights themselves.  In the effort of simplicity, this system 
uses single global values to control much of the lights 
behavior, namely the ambient values, and the 
LightKDist value, which is basically a mechanism for 
how ‘bright’ the light will appear on object, and how 
quickly it will fall to shadow.  The following table 
descripbes the lighting values and their effects on the 
system. 

 Table 2: Global Lighting Variables 
VARIABLE DESCRIPTION 

LightKdist Numerical integer describing the fall. 

LightIar, LightIab, 
LightIag 

Red,Green,and Blue attributes for 
ambient light. 

BackR, BackG, 
BackB 

Red, Green, and Blue components of 
background color (before applying 
ambient contribution). 

 

1.5 CAMERAS AND CLIPPING PLANES 
There really in essence is not a ‘camera’ in the sense of 
most traditional 3D packages.  There is simply a 
viewpoint that is expressed in spherical coordinates, and a 
matrix that is created from projecting this point onto the 
2D viewing plane (in our case, the Render Window).  
Additionally, it is possible to move the point that the 
viewpoint is ‘looking at’ by changing the Focus(X,Y,Z) 
coordinates.  All of the viewpoint variables are set in the 
‘StartMovie’ script, the Projector Matrix is created by 
calling Mat3Pproject and feeding it the coordinates of 
the viewpoint, the coordinates of the viewpoint focus, and 
the nature of the world coordinate system (in this case we 
are using a ‘Y-up’ world, where the Y axis points up, the 
X axis moves across the screen, and the Z axis comes out 
towards the viewer).    

1.6 WORLD CREATION : PUTTING IT ALL 
TOGETHER 

So in essence these are the parts of the program that are 
responsible for the creation of the scene and getting the 
scene to a point that it can be rendered at the desired 
resolution.  All of this occurs without any input from the 
user of the software, and occurs in the modules of the 
program as demonstrated in figure 3.  First, global 

variables are set that describe the viewpoint and the center 
of the scene, scene objects are instantiated, as well as light 
objects, and both objects and lights are held in their 
respective lists.  This occurs inside the DrawData script.  
All of the objects and lights have their respective 
coordinates projected and stored in their internal 
structures as the TransPoint[x] property.  Following 
through the code should be relatively straightforward 
based on the flowchart and the associated comments in 
the lingo code.  At the end of the completion of the 
DrawData script, all of the required globals and objects 
for rendering are ready for rendering, and the movie 
awaits user input, namely the RayTrace( ) command 
that you gave when starting the movie. 
  

Table 3: Global Viewpoint Variables 
VARIABLE DESCRIPTION 

EyeR The first part of the viewpoint 
coordinates, expressed in spherical 
coordinates. This value represents the 
distance from the origin of the world 
(set in Focus X, Y and Z) 

EyePhi This is the angle between the 
viewpoint and the XZ plane (assuming 
a Y-up world, which this is). 

EyeTheta The angle representing rotation of the 
viewpoint around the Y axis. 

FocusX, FocusY, 
FocusZ 

Point in 3D space that the viewpoint is 
centered on.  . 

Projector The Matrix returned by projecting the 
coordinates above onto the viewing 
plane.  This matrix is then applied to 
all objects and lights such that when 
drawn on the plane they appear in 
proper perspctive. 

 
 

2 THE RENDER WINDOW AND PIXEL 
PLOTTING 

2.1 RENDER WINDOW AND LINGO 
APAPTION TECHNIQUE 

Typical ray-tracers have what is called a ‘render window’ 
that hold and display the scene as it is being calculated. 
This movie tries to emulate that in Director using a 
separate Movie In A Window (MIAW).  This is a very 
simple movie, containing only 2 scripts and 1 sprite.  The 
first script is what I consider a standard way to keep a 
movie running on a single frame, which is the standard 
‘go to the frame loop’ located in the ‘go_frame_loop’ 
script.  The sprite is a cast member who is exactly 1 x 1 
pixel square, and whose color is solid black (rgb 0,0,0).   



 

 

 
Figure 3: Flowchart of world creation and startup. 
 
The third and final script is a method that allows a given 
pixel to be plotted at a precise RGB value.  This is 
accomplished in Lingo by allowing the script to position 
the locH and locV of the pixel sprite (in essence placing it 
on the stage) and setting the RGB color value of this pixel 
(see figure 4). Because the image size is variable, this 
movie uses the same sprite over and over again rather that 
a separate sprite for each pixel.  To achieve this illusion, 
you will notice that the pixel sprite has trails turned on, 
thus presenting the illusion that we are drawing separate 
pixels to the render window when in fact we are drawing 
the same one over and over.  The movie starts with the 
pixel sprite located off the stage. 
 
on plot_pixel x, y, r, g, b 
  Sprite(1).locH = x 
  Sprite(1).locV = y 
  Sprite(1).color = rgb(r,g,b) 
  updatestage 
end plot_pixel 
 
Figure 4: sample code to plot a pixel on the render 
window stage. 

The main rendering loop (called from the RayTrace 
command you issues at the start of this article) uses a 
double loop to plot every pixel on in the render view, 
from left to right, top to bottom.  This produces the effect 
of the image being ‘built in lines’ and is indicative of this 
generation of ray-tracers, where each pixel value is 
sampled individually. 

2.2 THE RENDERING LOOP 
The real underlying issue of course, is not looping 
through the pixels and plotting them but in knowing 
which color to plot them with.  This is finally the 
intersection of the 3D world with the 2D image plane, and 
the idea is to some degree a simple one.  What this 
program does, in its simplest form is send out rays from 
the center of projection, through each pixel, and into the 
scene.  The program then checks to see how far into the 
scene the ray travels, if it reaches an arbitrary infinite 
value, then it can be assumed that it did not hit anything, 
and the background should be rendered. If the distance 
comes back as less than infinite, then the color is 
calculated based on which object was hit and how that 
object was lit (see figure 5). 
 

 
Figure 5: Basic Ray-Tracing Theory. 
 
This system then, has the added bonus of built in 
overlapping and culling of objects, since rays can hit one 
and only one object first.  The process of calculating the 
ray distance, and the color of an object hit, is exceedingly 
intensive, and is implemented in the sample file as 
follows: 
For each pixel, a call is made to the RayColor function, 
which in turn calls the TraceRay function. RayColor 
is used to average the results from multiple calls to 
TraceRay, sampling a pixel more than once based on 
the number of lights in the scene. TraceRay is truly the 
start of the ray-tracing process, as it loops through each 
object in the scene, and recursively tries to find the 
shortest distance by using the RayDistance method of 
each object on the list.  The RayDistance method is 
built using the classic quadratic for this purpose, derived 
in full in Foley’s master work [1987, 1996] and 
implemented by Stevens [1997] and many others.  The 
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comments in this section of code should explain to some 
degree the purpose of each calculation. 
Once the minimum distance is obtained, and assuming 
that distance is not infinite, the object that produced the 
closest intersection with regards to the center of 
projection is now the ‘active object’ as any other object 
encountered would, by default, be behind the active one.  
The TraceRay function then calls this objects 
HitColor routine, to determine, at that point of 
intersection, which is stored in the objects pHitY, 
pHitY, and pHitZ properties from the previous call to 
RayDistance.  HitColor calculates the color of that 
point be determining what color the object would be at 
that location, again through algorithms well published and 
documented [1997].  The first step in creating the illusion 
is tracing a ray from the point of intersection to the light 
source, and seeing if it gets there without interruption.  If 
it does, then it can be assumed that the light is shining on 
the surface, if it does not then the surface is in shadow, 
and as such there should be no diffuse value other than 
the standard ambient value for the scene.  Assuming that 
the object is lit, the process for diffuse color is very 
simple, it involves calculating the normal of the surface at 
point of intersection, calculating a vector from that point 
to the light source, and then examining the angle of 
difference between these two vectors.  If the angle is 
large, then the surface faces away from the light and is 
likely in very dim, otherwise, the reverse is true.  To 
measure this, the traditional approach is to take the dot 
product of the two vectors and multiply them by the base 
constant of the color of the object, modifying the colors 
both positively and negatively to produce shading. 
The specular highlights found in the system are simply 
one further step along this idea, using a vector calculated 
back from to the viewpoint from the point of intersection, 
and using the dot product of this vector and a vector in the 
mirror direction to the one described above, multiplied by 
a constant to determine how ‘shiny’ the object is.  This 
produces the ‘plastic look’ common to ray tracing systems 
before the addition of texture mapping techniques.   

3 ADDITIONAL FEATURE SET 

3.1 REFLECTION 
Reflection is usually the first ‘goodie’ that people 
implement in systems such as these, and it is implemented 
faithfully here.  The reason for this is that it is the first 
logical follow-on to the idea of tracing rays. Essentially, 
instead of only calculating the color at the point where a 
ray hits an object, a new ray from that ‘hit location’ is 
traced back through the scene to see if it intersects another 
object.  If another object is encountered, that color is 
calculated and averaged with the first color using a 
constant that is set to determine how reflective we want 
the object to look.  The greater the constant, the greater 
the effect of the second color, and thus the less influence 
the first has.  To some degree, this mimics the way light is 

bent by reflective objects in the real world, and can 
provide a convincing illusion if the constants and lighting 
are set at believable levels [1989]. 
To accomplish this, this program implements a technique 
often found in graphics systems and more traditional 
computer science program architecture, but one that this 
author has rarely used in standard multimedia 
programming: recursion.  The user of this system will 
pass in the maximum number of times a ray is allowed to 
‘bounce’, referred to as ‘ray-depth’.  This attribute is 
passed from the TraceRay function to an object’s 
HitColor method when we calculate the color of an 
initial ray intersection.  The program will then (assuming 
that the depth is not infinite) reduce this value by 1 and 
call TraceRay again, this time with a starting location 
not from the center of projection, but from the last 
intersection of ray and object.  This continues (assuming 
that none of the rays run to infinity) until the ray-depth 
value is depleted to zero.  Note, that this can drastically 
effect the overall performance of the system because 
tuning this value to a high number causes the number of 
calculations to grow, while there is very little visual effect 
beyond a relatively low number of recursive iterations.  
Also note the possibility that without the level being user 
set, the possibility for 2 perfectly parallel, perfectly 
reflective planes to trap a ray forever, and thus cause an 
infinite loop. 

3.2 TRANSPARENCY & REFRACTION 
The final ‘illusion’ presented in this demo is that of 
transparency, with refraction.  This is achieved by 
allowing the ray to pass through the object, and adjusting 
the angle of the ray based on the inverse normal of the 
surface and the constants set for the index of refraction.  
The larger the difference between the first and second 
constants (n1 and n2) the more the rays will ‘bend’.  
Stevens describes this process in much greater detail 
[1997], as does Foley [1987] and many other classic texts 
on computer graphics techniques. 

 
Figure 6: Pre-blur ray-tracer output. 
 



 

 

4 PIXEL BLUR AND ANTI-ALIAS 
ROUTINES 

4.1 THE NEED FOR SAMPLING 
The need for sampling becomes apparent when 
considering an original render of the system (see figure 
6).  In this picture, the edges of the objects are ‘popped 
out’ against the scene, producing ‘jaggies’ along the 
edges of the objects.  This occurs because a single pixel 
can be one and only one color value, and when 
calculating the pixels the system must choose weather a 
pixel lies inside or outside an object.  If the edge of the 
object is at an angle or curves across the pixel grid, this 
produces the effect seen above, described by Glassner as 
‘Spatial Aliasing’ [1989]. 

4.2 PIXEL BLUR ROUTINES 
The solution to this issue, in its simplest form, is to 
sample a pixel more than once and then average the 
results of those samples together to get the final solution. 
In essence, if the pixel grid is of a finer resolution, then 
the appearance will be better and the aliasing effects 
minimized.  This solution samples a pixel 5 times, once at 
its center and 4 times at an offset from the center, one in 
each direction.  This offset is the blur arguments passed to 
the engine at render-time, and should be greater then zero, 
but not more than one full pixel, else stippling effects will 
occur.  Note that (a) a system that only used additional 
sampling rays where it was deemed necessary because of 
a large variation in the initial sample set would be more 
effective [1989] and that (b) this solves the issue of single 
frame aliasing only, it does not solve motion based 
artifacts should multiple stills from this engine be played 
back in sequence [1987, 1997][1987].  

5 CONCLUSIONS 
This system is unique mainly in its implementation 
choice, it is intended as an introduction to the ideas of 
traditional computer graphics for a non-traditional 
audience.  This paper and the associated application have 
hopefully provided the reader with a basic understanding 
of the parts of the system, and the resources and 
references to explore the formal literature on the subject 
in a meaningful way.  Additionally, is has demonstrated 
as an aside that the Lingo language is fully capable of 
implementing the types of systems that are often regarded 
as a suitable ‘level of difficulty’ for undergraduate 
computer science or graphics courses, and that it has 
grown into a fully featured programming environment.  
While the performance of the system is certainly not 
ideal, this performance comes more from the algorithms 
used for calculation and sampling than any overall 
deficiency in the language.  A much faster 
implementation could like be obtained with more modern 
algorithms and recursion techniques, however this may be 
counter productive to the audience, as it would likely be 

less understandable to a novice. Finally it has been 
suggested, and is interesting to this author, to combine 
this engine with the author’s other work in artificial life to 
allow visualization of scenes that are allowed to evolve on 
their own through the use of genetic algorithms. 
 

6 FUTURE WORK 
This work is the first work in creating a whole-scale 
animation system in director. A real-time wire-frame 
modeler and time track are also underway.  Obviously, 
such a system is not for production use, but would be a 
valuable educational tool in teaching students how these 
systems work, that they are not ‘magic’.  Additionally, 
this project serves as an introduction to graphics concepts 
and algorithms; from here students could easily begin 
research into real-time solutions in a variety of languages.  
I would like to add to this a more complete pixel sampling 
mechanism that discusses Stochastic sampling and 
weighting of differences for better edge resolution, as 
well as providing a performance increase.  Also of 
primary import is also the inclusion of texture mapping 
support, in a most basic sense, to serve as an example for 
more complex engines.  Finally, the ability to load and 
save scenes from text files in a pre-rendered state, 
possibly using the VRML or other simple format, coupled 
with the ability to save the rendered image in a .jpg or .gif 
format for use on the web, would further the benefit of 
this application as an educational tool. 
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