
Simulating Arcade Style Explosions in Game Environments using
 2D Sprite Positioning L-Systems and Random Tree Structures.

Andrew M Phelps
Assistant Professor

Information Technology Dept.
Rochester Institute of Technology

Rochester, NY, 14623
http://andysgi.rit.edu/

amp@it.rit.edu

Aaron S Cloutier
Multimedia Graduate Assistant
Information Technology Dept.

Rochester Institute of Technology
Rochester, NY, 14623
ascloutier@mac.com

Abstract

There are several instances in arcade
games and similar entertainment titles
where it is desirable to simulate the
expansion of an explosion or similar event
(plasma ring, dust cloud, etc). While some
modern engines can devote processor
cycles to calculating the real-time expansion
of a simple cloud, more often than not in
web and downloadable games the
resources are not available. We describe a
reasonable approximation of expansion that
seems to stand up to the ‘visibility test’,
meaning that users find such effects to be
believable within the game world, and richer
than a single animated sequence. These
techniques are in no way physically accurate
to the expansion of a cloud due to explosive
force, nor are they based on any physical
model whatsoever.
Instead, we propose the use of classical tree
algorithms, and describe both Lindenmayer-
Systems [1] and random fractal trees as
competing methodologies. Using these
trees as layout mechanisms has been
largely successful in producing visually
acceptable results within our own engines,
and the techniques should be adaptable to a
range of other games and applications. We
provide an example of a random fractal tree
explosion and the accompanying code-base.
L-System explosions are discussed but are
not presented as a demonstration due to the
wealth of existing materials on their creation.
Finally, several basic special effects are
explored, as well as adaptation from two-
dimensional test environments to
Shockwave 3D.

A random-tree explosion generates from a single animated
sequence, composted in real-time with tree-layout, alpha-
blending, and wind shear effect.

1 THE SINGLE EXPLOSION SPRITE

1.1 A LOOK AT NON-TREED APPROACHES
A number of non-treed approaches exist for the
simulation of explosions-like events, meaning the
expansion of gas and debris over time. The most
simplistic of these is a single sprite animation. Using
this approach, a number of tiles are pre-rendered
that depict the event, and then played back, one
after another to produce the animation. This is in
fact at the core of any of the more advanced
techniques: the ability to animate over time. That
the sprite technique does so using pre-rendered
frames is its defining characteristic, and in fact we
use the sprite technique as the basis for our trees.
There are also several non-sprite-based techniques
worth mentioning. There was a great deal of work
done with regard to the modeling of expanding
gases by David Ebert [2], which proposes the use of
noise functions and real-time compositing to

produce effects in a three-dimensional graphics
system. Also noteworthy were the color algorithms
for expanding mist proposed and illustrated by F.
Kenton Musgrave [3]. Regardless of claims of real-
time performance, however, we have found such
solutions to be too computationally intensive for
interpretive frameworks such as Shockwave, and
have had only minimal success in adapting these
techniques.
Another interesting technique is the real-time
deformation of spheres using the per-vertex and per-
pixel pipelines found in modern graphics hardware.
This is demonstrated in part in the planet-creation
routines of Jesse Laeuchli [4][5], although it is
obvious how these routines could be useful in
simulating explosion and similar effects using similar
geometry, essentially deforming a sphere in real-
time through pre- and post-render effects based on
noisy textures.
The technique with perhaps the most current known
implementations is the use of a formal particle
system for simulation and rendering. These systems
are built into most rendering software
(Alias|Wavefront’s Maya®, Kinetix 3dsMax®, etc).
They are also available in real-time on modern
graphics hardware, provided that they are not
overused. There have been several examples
recently of how to simulate explosion-style effects
using particle-systems. [6][7] But these simulations
rely on direct access to the GPU though shader
languages (generally either Cg from Nvidia or the
DirectX 9.0 HLSL). Given that neither of these is
directly available, and that the available particle
systems objects are a significant performance drain
on Shockwave 3D environments, this technique was
not fully explored. It should be theoretically possible
to implement the particle routines in software and
use sprite-based techniques for rendering.
A final approach is to use textured quads or spheres
with full-motion video of actual explosions. This
technique attempts to simulate none of the random,
chaotic nature of an explosion and instead relies on
successfully compositing a real explosion into the
scene. The advantages of this technique are
obvious: it has the capability to look the best of any
possible simulation because it is, in fact, the real
thing. There are, however, a number of issues
related to correctly scaling and placing the video in
the scene, masking and clipping the explosion from
the rest of the footage, and performance problems
that arise from the size of video footage even in
compressed form. It was not deemed appropriate,
in a real-time game, to attempt this using the current
crop of video tools, although such an attempt may
be useful, either as a direct composite or as a
texture extraction exercise.

1.2 DUPLICATING ANIMATION SEQUENCES
In the creation of what we believe to be convincing
animation system, we first looked at generating the
explosion graphics algorithmically, but this proved to
be a significantly arduous task within the confines of
Director. Instead, we turned to Kinetix 3D Studio
Max® and pre-rendered a series of slides as high-
quality PNG images with alpha channel. This is not
as elegant as generating them via the code base, as
they have to be shipped with the game rather than
generated post-download, but the visual appeal was
much greater than any attempt at a lingo-based
render (and significantly faster). As such, the demo
movie contains an “EXPLOSIONS” cast in which our
pre-rendered slides are stored as cast members (it
should be noted that the size of these cast members
is quite large, which will be addressed in section
3.X).
Once all of the image tiles have been created, it is
necessary to display them in sequence to produce
animation. This is done using imaging lingo
techniques, in the “Base Animator” script. This script
is essentially a re-creation of the sprite functionality
of the classic Director engine, only using imaging
techniques instead of traditional sprite based ones.
It operates under the following rules:

1. Each member of the EXPLOSIONS cast has
its image duplicated and places in an array
(EXPLOSTION_WORLD[#g_aExpImages]

2. Each separate explosion created receives a
new instance of the “Base Animator” script.
This object contains an mUpdate method.

3. Each frame, the mUpdate method of all
available Base Animators is called. This is
akin to a “stepframe” for objects placed on
the ActorLIst

4. The mUpdate method draws the current
image in the array (starting with the first)
onto a buffer image the size and shape of
the stage by calling the objects mDraw
method. Following the draw, the current
image counter is increased, such that the
next frame drawn will correspond to the next
image in the array.

5. The mDraw method uses standard
copyPIxel commands to copy the image
from the g_aExpImages array onto the
buffer (see the commented “straight blit”
code for details)

NOTE: All explosions, be they the first or last, draw
from the same set of images in the array: this is
essentially a glorified version of the way sprites
instance cast members without needing to duplicate
the media itself. Thus while the initial set of images
is rather large, they exist in one selected memory
space and do not change position or size, and can

thus be thought of as at least partially optimized in
the sense that no direct calculation needs to occur
on a per-frame basis other than the copy into the
stage buffer. Also note that our initial tests used the
image of the stage itself instead of a buffer, and
while this consumed less memory, it was
significantly slower than rendering to an off-screen
image and performing a single copy onto the stage.

1.3 ROTATION FOR ADDITIONAL VARIETY
Even with the ability to add several explosion
sequences from the same image set, the system
exhibited too much similarity, given that the clouds in
one sequence would exactly match the expansion of
the second. To combat this, a system was
developed that allows for the rotation of the “sprite”
around its own origin. Since there is no actual sprite
object, this system implements its own rotation,
using methodology similar to that presented in the
author’s collision system [8] using the formula for
rotation in two dimensions presented in Figure 1.

Figure 1: Equation describing rotation of a two-dimensional point
around the origin in Cartesian space where [x’ y’] describes the
position of [x y].

The points of the non-rotated bounding rect of the
image are rotated around a given angle, and the
resulting points are used to form a quad that is fed to
the copyPixels command in place of the target
rectangle. For performance reasons, the sin() and
cos() of each angle is pre-generated and placed in a
lookup table for easy retrieval, as this yield
significant speed increases when compared to
computing the values every frame. A further
optimization that could be implemented would be to
not rotate the quad at all if the target “sprite” did not
rotate that frame. The code for the sin/cos lookup
table generation is presented in Figure 2. The code
for the actual computation of the rotated image quad
is contained in the “BASE_ANIMATOR” and
“ROTATION_HELPERS” scripts (see the
“mRotateQuad” handler for specifics).

--generate sin / cos lookup tables.
 D3D_WORLD[#g_aSin] = []
 D3D_WORLD[#g_aCos] = []
 repeat with iCounter = 1 to 360
 D3D_WORLD[#g_aSin][iCounter] = \
 sin(iCounter * \
 D3D_WORLD[#g_fDegrad])
 D3D_WORLD[#g_aCos][iCounter] = \
 cos(iCounter * \

 D3D_WORLD[#g_fDegrad])
end repeat

Figure 2: Lingo handler for pre-generation of sin / cos lookup
tables where integer angles serve as keys to the individual
values.

2 LAYOUT & EXPANSION
ALGORITHIMS

2.1 L-SYSTEMS AS A LAYOUT TOOL
The first methology used for the layout of the
individual explosions is an Lindenmyer system.
Such systems are commonly used for rendering
plants, grasses, and bushes [9], but can also be
thought of as a way to generate point lists in time.
The authors do not present the underlying structure
of their L-System implementation as it does not differ
significantly from the basic technique described by
Lindenmyer and implemented in [2], and there are
several good documentable sources describing
other Shockwave3D implementations that our as
advanced if not superior to the ones we present
here. The L-Systems in this case are not the focus
of the application, but rather a way to generate a set
of points that are stored in subsequent arrays, and
serve as the basis for explosion sequences at those
locations. This idea is presented in Figure 3.

Figure 3: Generation of event levels via an L-System
Methodology. Explosions are generated at level 1 first, then
2,3,etc. at specific intervals.

x ′ y′ x y θcos θsin
θsin– θcos

×=

Explosion Event Level 1 – Array 1

Explosion Event Level 2 – Array 2

Explosion Event Level 3 – Array 3

Explosion Event Level 4 – Array 4

Explosion Event Level 5 – Array 5

Using these “Event Levels” an animation controller is
constructed that places a large animation at Level 1
using the “base animator” presented earlier. After
some number of frames have elapsed, smaller
explosions are started at Level 2, at a slightly
smaller scale, and possibly at a difference per-frame
rate. After yet more time has expired, explosion
sequences are started at the positions stored in
Level 3, etc, etc. This process is repeated to the
desired depth. When no noise is introduced into the
system with regards to variability in scale, position,
or play-rate a semi-ordered explosion ensues, as
can be seen in Figure 4.

Figure 4: Top-down L-System explosion tree over 64 frames
captured every 8 frames. Screenshot taken from the Broadsword
Engine, alpha 0.82. Copyright A. Cloutier and A. Phelps 2003-
2004.

The explosion above stores the positions of an L-
System similar to that presented in Figure 3, but with
greater radial symmetry. The explosion is seen from
the top down, with entities towards the root-node

rescaled to a larger size, where scale is diminished
per-level, and rotation of the explosion in 2D space
is random, but always bill-boarded to the camera. A
time-lapse view of the explosion that demonstrates
this symmetry is presented in Fig. 5.

.
Figure 5: Time-Lapse view of top-down L-System explosion tree
over 60 frames. Screenshot taken from the Broadsword Engine,
alpha 0.82. Copyright A. Cloutier and A. Phelps 2003-2004.

2.2 RANDOM TREES
The explosions presented previously are desirable if
and when a more “ordered” explosion is needed. To
get a more chaotic feel, a second approach was
used, based on a more random, less-governed tree.
This is not to say that L-System are incapable of
producing less ordered results: techniques such as
random pruning, selective offspring, and pseudo-
random noise tables can produce significantly
altered visuals from the base tree. In the interest of
time and performance however, a second approach
was implemented that simply computes a number of
children from the parent at completely random
angles. This is significantly easier to calculate, and
can be visually appealing if somewhat controlled.
This technique is the basis for the FRACTAL script
in the demo file, and a render of non-explosive
spheres, color coded by age, can be seen in Figure
6. This technique is based in part on Keith Peters’
work in fractal generation, but without any of the
advanced rulesets applied [10]
The FRACTAL script begins by creating an
explosion at the base position, and then waits until
the next pass to create the children to that parent.
Recursively, it then creates the children to those
parents, and continues to iterate to its maximum
depth, pausing and waiting N frames between
creations such that the explosions appear to
cascade out from the center. Each time an
explosions is created, a new “Base Animator” is

1 2

3 4

5 6

7 8

Figure 6: A rendering of the same fractal system that is used in
explosion generation, with all nodes rendered as spheres. Color
and size represent age in the system, with large / light red [center]
being the root node and the smallest purple nodes being the last.
Connection between nodes are child-parent and represented with
grey lines.

created, and stored in the EXPLOSION_MGR. This
manager keeps track of all of the currently playing
explosions, and updates each of them per-frame on
its own mUpdate method. Thus, once an individual
“base animator” is created at a certain position, it is
totally independent of the fractal – it will animate,
rotate, and drift on its own without interaction with
the other nodes in the fractal. A final explosion
sequence using this technique is presented in Fig 7.

3 EFFECTS AND 3D

3.1 WIND AND OTHER SPECIAL EFFECTS
Several effects are added to the base explosion
system, the most noticeable is the “wind” effect. The
effect is actually dead simple, and involves a hack to
the “base animator”. Every frame, as the animator
calculates the quad into which it draws the image for
the frame, the quad is offset by a number of pixels in
the x and y direction. This can be done linearly for a
flat “slide” of the explosion, or exponentially such
that the wind has no effect at first, and has a greater
and greater effect based on the number of frames
the animator has already calculated. The formula
used in the wind example provided is p = p +
(f1/ft)*c, where p represents the position of the quad-
point, f1 represents the current frame of the
animation, ft represents the total number of frames
in the animation, and c is a constant value that
represents the wind strength. (2D coordinate
positions pX and pY are computed individually).
This could be modified such that either c or (f1/ft) is

raised to an exponential power to further slant the
curve of the winds effect if needed.

Figure 7: Explosion sequence based on a fractalized, random tree
structure and animated explosion tiles.

A second small touch that was added is an ever
increasing rotational force such that explosions that
do not appear to rotate when they begin do

approach noticeable rotation as they fade into
smoke and debris. There is a small amount of
randomization in the rotational speed to avoid visual
repetition.

3.2 ANIMATING IN PERFORMANCE CRITICAL
ENVIRONMENTS

It is worth noting that in performance critical
environments there are two major factors that can
effectively speed up the system. The first is the size
of the pre-rendered explosion images, and smaller
images increase performance because there is less
information to copy per frame. In general, explosion
tiles can be rendered 1/3rd to 1/4th of the size that
they will be seen on screen and the results will still
be visually appealing. Rendering the tiles too small
relative to size on screen results in over-pixelation
and visual degradation.
The second available optimization occurs in trees
that advance far enough such that there are a large
number of children towards the end of the tree. In
such systems, it is generally unnecessary to draw all
of the children towards the end of the tree, as they
cannot be visually distinguished from their peers at
this level. Thus, either linearly or exponentially
culling the number of children per node or simply
capping the growth algorithm at an upper bound can
allow explosions to continue visually without
degrading performance due to the number of child
objects. A balance between the cap and the visual
results of the system should be obtainable. See the
comments at the bottom of the mUpdate method in
the “FRACTAL” script for further details.

3.3 ADAPTATION TO SHOCKWAVE 3D AND
TEXTURED QUADS OR SPHERES

The final implementation of this system operates in a
Shockwave3D, and derives several benefits from the
3D environment. First and foremost, instead of
creating an array of images, an array of textures is
created through standard S3D methodologies.
These textures are then mapped onto models that
are single meshes of 2 adjoining triangles that
create a square “tile”. These tiles can be rotated
freely without any of the sin/cos operations above by
applying matrix operations to the model through the
model.rotate(vector(0,Ф,0),#self) where
Ф is the desired angle of rotation. This is a
significant performance advantage. All of the tiles
remain oriented towards the camera, and a “camera
render-group” approach can be used to ensure that
explosions always render on top of other elements
[11].
The second major advantage is the complete lack of
copyPixel operations. The explosions animate by
swapping textures onto the model one after another,

there is no need to copy the image into screen or
pixel-space. This is further optimized by the fact that
the textures can be very small compared to the
rendered textures used in the demo, because of the
mip-maps created by the graphics card when the
images are used to create textures. In the prototype
of the engine, the sample explosions in Figures 4
and 5 were created using pre-rendered explosions
that were 16x16 pixels. This is significantly smaller
than the 128x96 pixel tiles used in the imaging lingo
demo program, but the results are as good if not
more appealing, due primarily to the mip-mapping
and texture blurring features found in modern
graphics hardware.

4 CONCLUSIONS
There are several methodologies available to create
more believable explosions and gas-like and
particle-like effects in game engines. While several
of these rely on advanced techniques using modern
graphics hardware, some tried-and true techniques
like billboarding sprites and animations are still very
effective. Using L-Systems and random trees can
help create believable placement of expanding gas-
clouds without the complicated mathematics of
exactly modeling the physics of rapidly expanding
gas and debris. This is particularly suited to arcade
style games, in which explosion based effects are
often needed, but the processor time that can be
devoted to them is minimal.

References
[1] Eric W. Weisstein. "Lindenmayer System." From
MathWorld--A Wolfram Web Resource. Online:
http://mathworld.wolfram.com/LindenmayerSystem.h
tml
[2] Ebert, David S., F. Kenton Musgrave, Darwyn
Peachy, Ken Perlin and Steven Worley. Texturing &
Modeling: A Procedural Approach. 3rd Edition. San
Francisco, California. Morgan Kauffman, 2003. pp.
203-224.
[3] Ebert, David S., F. Kenton Musgrave, Darwyn
Peachy, Ken Perlin and Steven Worley. Texturing &
Modeling: A Procedural Approach. 3rd Edition. San
Francisco, California. Morgan Kauffman, 2003. p.
553.
[4] Jesse, Laeuchli. “Real-Time Generation and
Rendering of Planest in 3D“. Graphics Programming
Methods. Ed. Jeff Lander. Hingham,
Massachusetts. Charles River Media, Inc. 2003. p.
193-199.
[5] Jesse, Laeuchli. “3D Planets on the GPU“.
Shader X2: Shader Programming Tips & Tricks with
DirectX 9. Ed. Wolfgang F. Engel. Plano, Texas.
Wordware Publishing, 2003.

[6] Celes, Waldemar and Antonio Calomeni.
“Simulating and Rendering Particle Systems“.
Graphics Programming Methods. Ed. Jeff Lander.
Hingham, Massachusetts. Charles River Media, Inc.
2003. p.5-16.
[7] McCuskey, Mason. Special Effects Game
Programming with DirectX. The Premier Press
Game Development Series. Ed. Andre Lamothe.
Premier Press, 2002. 698-706.
[8] Phelps, Andrew M., and Aaron S Cloutier.
“Methodologies for Quick Approximation of 2D
Collision Detection Using Polygon Armatures“.
Macromedia DevNet Center. 2003. Online:
http://www.macromedia.com/devnet/mx/director/artic
les/collision_detection/collision_detection_lingo.pdf
[9] Przemyslaw Prusinkiewicz, A. Lindenmayer. The
Algorithmic Beauty of Plants. Springer Verlag. April
1996.
[10] Peters, Keith. Flash Most Wanted Effects &
Movies. Friends of Ed. 2003.
[11] Hill, Mark. “Brain Goes Bye-Bye“ DirGames-L
listserve discussion. Friday, November, 15th 2002.
http://nuttybar.drama.uga.edu/pipermail/dirgames-
l/2002-November/020340.html

1 2

3 4

5 6

7 8

