
Perspective Based Lingo Mazes: The Director Dungeon Crawl

Andrew M Phelps

Information Technology Dept.
Rochester Institute of Technology

Rochester, NY, 14623
http://andysgi.rit.edu/

Abstract

This article outlines the process of creating a
typical ‘maze game’ in which characters move
around via the arrow keys, and must navigate
passages defined by the walls of the maze.
Further, the view that the character is presented
with is one based in first person perspective,
meaning that they see the maze as if they were in
it. This type of system was popularized by
adventure games in the early 1980’s like Bard’s
Tale™, Wizardry™, and Might& Magic™, and
has remained a staple of the genre to this day.
This paper is split into two major sections, the
first describing the basics of the program,
including the relevant data structures and engine
setup, and the second linking the underlying
engine to the display system producing the
illusion of perspective. There is also a future
work section describing a few uses for an engine
such as this, and links and references to other
maze-game implementations.

1 THE MAZE GAME ENGINE CORE

1.1 TUTORIAL FILE SETUP
The idea of a maze game has been around for a while, and
was popularized in the 1980’s by one of my favorite
games of all time, A Bard’s Tale by Interplay Productions
[198x]. Bard’s Tale also included character advancement
and combat in a pseudo-Dungeons & Dragons type
storyline, and it should be noted that this engine
implements absolutely none of that, it is only concerned
with movement and rendering. This engine is provided as
a stepping-stone for games of that ilk, or for many other
genres, it is concerned primarily with the ‘how’ of the
maze rather than the ‘why’.
To begin, download the demo files and unzip them into a
directory of your choice. Start the movie. Upon starting
the movie you will be placed into a most incredibly
boring maze, one that has no walls. Given that this tends
to be rather unimpressive, click the “load” button. Select

the “maze01.txt” file that was included in the download
package. The world we will reload, and you will be faced
with the screen in figure 1.

Figure 1: Screenshot of the Maze Engine version 1.0 in action.

This is the demonstration maze that the engine ships with,
and you can explore it using the map in figure 2. The ‘up’
arrow moves forward, and the ‘right’ and ‘left’ arrows
turn you right or left. If you get lost you can always
reload and you will be placed back at the ‘start’ position,
on the “X” in figure 2, facing north (‘up’ on the map).

Figure 2: Map of the sample maze. Start position is (3,1).

1.2 DATA STRUCTURES & GLOBAL
VARIABLES

At the root of all maze games is a rather common data
structure, a two-dimensional array. This is the common
structure used in more traditional 2D or ‘top down’
games, and have been implemented in Lingo by
Rozenfeld [2000] as well as countless other authors. This
engine creates a two dimensional array, but goes one step
further in that it stores in each position of the list a
property list that describes the position or ‘square’ of the
current location. The process of list creation and
manipulation has been well documented by other authors
like Small [1996] and thus this paper offers little
explanation on these basic features.
The original array is created by calling the Make_Maze
handler in the “Maze Tools” script. This handler in turn
calls the Create_Maze handler, which creates the array.
You can make a properly formatted maze square using the
Make_Maze_Square handler, you can add it to the
maze list with Add_Square_To_Maze, you can get the
property list from a specific location within the maze
array by using Get_Square_From_Maze, and you
can get the associated value for any key in the property
list calling the Get_Value_From_Square handler.
Finally, the entire creation of the array is governed by the
global variables declared in StartMovie. Table 1
describes their use in the overall construction of the
engine.

Table 1: Global Variables inside Maze Engine
VARIABLE DESCRIPTION

max_row Maximum number of rows allowable
in the maze.

max_column Maximum number of columns
allowable in the maze.

current_pos_x Current position of the character, along
the X-axis.

current_pos_y Current position of the character along
the Y-axis.

MAZE A pointer to the array describing the
maze.

facing_dir String containing the direction the
character is currently facing (‘north’,
‘south’, ‘east’, or ‘west’).

my_right_dir,
my_left_dir,
my_back_dir

String variables containing the
directions to the characters right left
and back. These can be calculated by
knowing the facing direction, but I
store them separately in the case than a
future version of the engine expands on
the number of possible directions.

1.3 MULTIPLE LEVES AND FILE
ABSTRACTION

After all of this setup and instantiation the movie calls
Populate_Maze and Fake_Maze, which are handlers
designed to load the default world that you get when you
start the movie. This presents an interesting problem and
it is one that is common to this type of application, how to
store the maze or series of mazes that make up a game.
One solution is the Fake_Maze handler, which is
essentially a script that inserts a hard-coded level into the
maze. This is, of course, less than ideal, as it requires the
programmer to create a script for each maze or level.
Additionally, it requires that the author of this script know
something about how the maze is structured, and it is rare
that the level designer and / or content writer is also the
programmer.
This engine also makes use of a second solution to this
issue, storing maze descriptions in separate text files. It
does this by reading and writing the array to text files
using the fileIO Xtra that ships with Director. This is
done by calling save_maze and load_maze, which
are bound to the save and load buttons within the
interface. These in turn format and save the text, or read
and load the array, respectively. How each handler calls
the next can be seen in the trace diagram in figure 3. This
method of ‘wrapping’ the fileIO xtra, originally
developed by Kurtz [1999], makes it easy to reuse this
block of code over and over, as we have done here at
R.I.T. on numerous projects.

Figure 3: Calling hierarchy for load / save functions.

1.4 MOVEMENT AND COLLISION
DETECTION

The final responsibility of the engine core is to account
for the movement of the character and the inability of the
character to move through walls (at least in most cases,
the classic games of the genre generally incorporate
hidden walls and teleports in addition to standard collision
detection). Moving through the maze is fairly
straightforward, and is implemented in the Move_Me
handler . This handler begins by deciding whether the
character is moving forwards or back, and then querying
the array for the description of the square the character is

Generic Support Layer

Save_Maze Load_Maze

Write Text
File

Read Text
File

File IO Xtra

currently occupying. If in the property list for the square
the value for the characters current facing direction is a
blank, then the character is allowed to proceed forward.
If this value is returned as a wall, then the character is not
allowed to move. This is the reason for describing each
square in a property list, by doing so you can determine
whether there are any obstacles in the way to block
movement.
Assuming the character is allowed to move forward, then
the Move_Me handler calls Find_Direction that
modifies the global current_pos_x and / or
current_pos_y variables to reflect a move on either
the X or Y-axis respectively. Additionally, this handler
contains the logic to make the maze ‘wrap around’ by
checking to see if the X or Y of the character has
exceeded the maximum number of rows or columns
defined at engine startup.

2 THE ILLUSION OF PERSPECTIVE

2.1 BASIC PERSPECTIVE AND LINGO QUAD
IMPLEMENTATION

The real distinction of this system from the more
traditional maze systems that have been implemented in
Lingo is not so much the code in how it works, but the
way in which it is drawn to the stage. This first person
perspective view has a long history, and was probably one
of the reasons for the success of the games that originally
implemented it, like Bard’s Tale [198x] (see figure 4).

Figure 4: The Bard’s Tale III, by Interplay Productions.

This view could be achieved by a traditional 3D engine,
projecting the planes against a center of projection and
using a lot of neat math tricks. Instead, this engine uses
none of this math, it works instead in the simplest
possible manner, manipulating only the visibility property
of a number of sprites to produce the illusion.
The first step in creating this illusion is ‘quadding’ the
sprites on the stage. What this really means is calling the
quad function over and over and positioning the corners
of a series of sprites to produce the illusion of depth. This
is done in the Position_Walls handler, and while this

script hard codes the values for the positions of the walls
relative to a 640x480 window, there is nothing preventing
a more advanced solution that uses the scale of the
window to determine the coordinate points. In any event,
the sprites are positioned using the quad function such
that they appear in perspective. If there were only 3
sprites possible (ie the character could only see the square
he was currently on) and they were not textured with
bitmaps, it would look like the original test application in
figure 5.

Figure 5: Original Maze Test (left wall in red, forward all in
blue, right wall in red showing the placement and quad locations
of individual sprites).

All the program is responsible for is turning these sprites
on and off, which it does through the visibility property.
In essence, all of the walls are there all of the time, its just
that they are sometimes ‘clear’. The program looks at the
square the character is currently occupying, and quesries
that square for the my_left_dir, my_right_dir,
and facing_dir values, if these come back as ‘wall’
then it renders the sprite as visible, if the lookup returns a
‘blank’ then the sprite is invisible.

2.2 ADDITIONAL DEPTH SORTING
This is, however, only part of the illusion. The shot above
of the original application is rather unconvincing as view
into a world, primarily because it fails to allow a character
to see into the distance. In order to allow a character to
see ‘further’, we align more sprites towards the center of
the stage. The closer we are to the center, the closer we
are to the vanishing points and the smaller the sprites.
This engine is set to allow a character to view the square
it is on and two additional squares forward. Note that just
like the original sprites, these sprites are always present,
and their visibility is manipulated in similar fashion in
relation to the property list for the square. The engine
simulates the position of the character by adding
temporary values before lookup to the characters
facing_dir.

2.3 OTHER VISIBLE SURFACES
The final steps in the illusion are the pieces of walls that
are parallel with the front of the viewers square, and the
floor. The floor is very simple, as this engine assumes
that the floor is always present, thus there is no need to
check for a visibility flag for the floor, and the
demonstration world ships with no ceiling. The little
pieces of the walls are accounted for by adding yet
another round of sprites, to account for the widening field
of vision from the characters perspective (see figure 6).
These values are calculated again by querying the array
for ‘wall’ or blank’ but offsetting the characters position
not only along the forward direction, but also to the left
and right of this value.

2.4 RECURSIVE SOLUTIONS
Needless to say, hard coding each pass of what is visible
and not visible based on list lookup is not an ideal
solution. There would most likely be a recursive solution
based on a depth_view parameter that determines how
many squares away a character is to see (in outdoor
worlds this is commonly used to determine the difference
between day and night, or to temporarily ‘blind’
characters to only the square they are currently on).
While not implemented here, it should be trivial based on
the implementation above to devise such a system, and
probably to position the sprites automatically as well.
This version of the engine is presented as a teaching tool
and as such does not contain the more abstracted code.
All of this lookup and manipulation occurs in the
Render_Maze handler, where case after case and
lookup after lookup are performed. Because Director
seems to have fairly good performance in list lookup, and
because the engine is not trying to smoothly pan the
transition, there is little to no lag from the users point of
view. After this lookup the Render_Maze handler calls
Draw_Maze which actually manipulates the visibility of
the sprites.

2.5 MOVING AND SPINNING
Characters move by using the arrow keys and as such the
movie binds the KeyDownScript constant to the
KeyPressed handler. This handler checks the
incoming ASCII value to ascertain which arrow was
pressed, and then calls the Spin_left, Spin_right,
or Move_Me handler as appropriate, passing forward for
the up arrow key and backward for the down. This is the
same Move_Me handler that was described previously,
but at the end of the move_me handler is a call to the
Render_Maze function to update the view.
The final touch to the whole program is the ability of the
character to change their forward direction, which is
performed in the spin_left and spin_right
handlers. These handlers change the forward direction,
and then calculate the other three global variables by
calling Set_Init_Dir. This again calls the rendering
loop after the spin, so that the stage is updated.

3 CONCLUSIONS
This engine proves Director a capable tool for creating
games that were incredibly difficult to program a few
short years ago. While not offering the peak of
performance, the Lingo environment can still be used to
maximum advantage by playing to its strengths, and this
engine does exactly that. This system is a fairly open,
generic engine devised to support a first person
perspective maze game. With different graphics laid atop
the core code, this engine could be used in many different
types of systems to provide users with interesting puzzles.
Additionally, it can be retooled as the basis for a much
more complicated game, and is a suitable teaching tool for
students who need to understand the basics of lists, multi-
dimensional arrays, and property lists.

4 FUTURE WORK
This engine forms the basis for many different types of
games, and while this author is partial to role-playing
games, this engine could be used in a variety of scenarios.
If this engine were to be adapted into a game, it would be
necessary to add support for additional characters within
the maze. The functionality for character positions would
need to be abstracted out from a single set of global
variables and into a character-specific binding.
Additionally this engine provides what would probably be
a good test bed for AI algorithms, tasking them with
moving through the maze with the fewest number of
moves, or with a specific goal pattern in mind. Students
in my courses have extended the engine to include
support for an object system, objects left on squares
remain until they are moved, and squares can contain up
to a fixed number of objects. They have also created a
global repository of maze files, which can be accessed
though the Director multi-user server, or through web
based solutions such as Directors GetNetText
functionality to download text files from remote source.
If this engine was ever used in a production game it
would be necessary to encrypt the maze descriptions
somehow since it would be far too easy for a player to
simple change a few walls and gain the treasure. My
personal goal would be to see this system incorporated
into a multi-player game using the Director Multi-user
Server, allowing each player to play a member of an
adventuring party. This engine represents the foundation
of all of these projects; if you take the ideas presented
here please contact the author at amp@it.rit.edu.

Acknowledgments
I would like to acknowledge my colleagues at the
Rochester Institute of Technology, and in particular
Professor Steve Kurtz, who shares my interest and
passion for writing graphics programs and extending
Lingo into this arena. He was responsible for the original
implementation of the code that ‘wraps’ the fileio extra,
and many of my colleagues at R.I.T. have been using
similar implementations for a number of years. I would

mailto:amp@it.rit.edu

also thank the team at Interplay, for ‘Bard’s Tale’, in
addition to dropping my average in 6th grade English by at
least a letter grade, that was one of the first games that
really hooked me on the genre of electronic
entertainment.

References
Rosenweig, Gary. (2000) Advanced Lingo for Games.
Indianapolis, Indiana: Hayen Books.
Small, Peter. (1996). The Magic of Lists, Objects and
Intelligent Agents. New York, New York: John Wiley &
Sons.
Kurtz, Steve. (1999) Wrapping the FileIO Xtra for Code
Re-use. Internal documentation at the Rochester Institute
of Technology, Department of Information Technology:
http://www.it.rit.edu.

Annotated Bibliography
[LL] = Lingo Lists & Property Lists [MG] = Maze Games
[LMG] = Lingo Specific Maze Game [P] = Perspective
views [GT] = Game Theory
Allis, Lee, et al. (1997) Inside Director 6 with Lingo.
Indianapolis, Indiana: New Riders Publishing. [LL]
Edgerton, P.A & W.S. Hall. (1999) Computer Graphics:
Mathematical First Steps Essex, England: Prentice Hall.
[P]
Gross, Phil and Jason Roberts. (2000) Director 8
Demystified: The Official Guide to Director 8 Shockwave
Internet Studio. Berkeley, California: Peachpit Press.
[LL][P]
Holder, Wayne and Doug Bell. (1998) Java Game
Programming for Dummies. Hungry Minds, Inc.
[MG][GT]
Rosenweig, Gary. (2000) Advanced Lingo for Games.
Indianapolis, Indiana: Hayen Books. [MG] [LL] [LMG]
[GT]
Rosenweig, Gary. (2000) Using Director 8 Special
Edition. Indianapolis, Indiana: Que. [LL]
Small, Peter. (1996). The Magic of Lists, Objects and
Intelligent Agents. New York, New York: John Wiley &
Sons. [LL][GT]

	THE MAZE GAME ENGINE CORE
	TUTORIAL FILE SETUP
	DATA STRUCTURES & GLOBAL VARIABLES
	MULTIPLE LEVES AND FILE ABSTRACTION
	MOVEMENT AND COLLISION DETECTION

	THE ILLUSION OF PERSPECTIVE
	BASIC PERSPECTIVE AND LINGO QUAD IMPLEMENTATION
	ADDITIONAL DEPTH SORTING
	OTHER VISIBLE SURFACES
	RECURSIVE SOLUTIONS
	MOVING AND SPINNING

	CONCLUSIONS
	FUTURE WORK
	
	References

